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I. GENERAL INTRODUCTION 

1. Thin films in current technology 

The deposition, growth, and equilibration of thin fihns has been the subject of intense 

interest in recent decades [1]. This interest is motivated by the pivotal role that thin films 

play in current technology. Perhaps the most important industrial application of thin films is 

in integrated electronic circuits. Here, ordered silicon layers, insulating oxide layers, and 

metal contact layers are deposited, patterned, and etched sequentially, creating densely 

packed microelectronic devices, each smaller than 1 |a.m in size [2]. Thin films are also 

utilized in surface-catalyzed reactions. Thin film materials are inexpensive, compared to 

bulk materials, leading to their prevalence in industrial surface processes. For instance, the 

Union Carbide Corporation employs deposited thin Ag fihns, instead of bulk Ag, in the Ag-

catalyzed epoxidation of ethylene [3]. Other industrially important appUcations for thin fihns 

include, but are not limited to, optical coatings, magnetic recording media, and corrosion 

preventative overlayers. 

Recent advances in the control of thin film structures have fostered a great deal of 

interest in the fabrication of microdevices and nanostructures using epitaxial materials. With 

technology borrowed from the semiconductor industry, scientists are now able to 

manufacture micromachines with !j.m thickness and a lateral dimension of 10-500 iJ,m [4]. 

Composed of deposited metal and semiconductor thin films, these electro-mechanical 

microdevices find use as sensors and actuators. Quantum dots [5] and nanowires [6] have 

also evolved from new advances in thin film growth methods. These nanostructures exhibit 

novel electronic and optical properties, but have proven difficult to consistently reproduce at 
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such small lateral sizes (~I-10 nm). Because this size regime is difficult to address with 

current lithography techniques, it is necessary to consider altemative fabrication methods. 

One such altemative is self-assembly from deposited metal and semiconductor atoms. This 

emerging field shows great potential, but requires a better understanding of film growth 

processes before becoming widely appUcable. 

The rapidly shrinking size of thin film devices places more stringent requirements on 

the quality and properties of epitaxial materials. As a consequence, device fabrication and 

stability must be controlled at the atomic level. During film growth, deposited atoms 

undergo fundamental interactions with each other and with the substrate. If one is to better 

understand the adhesion and growth of similar and dissimilar materials, these interactions 

must be of primary interest to the surface scientist. Elements of fabrication such as 

deposition flux, F, substrate temperature, T, and film thickness play crucial roles in 

determining film structure and associated film properties. Fortunately, these elements can be 

varied individually or simultaneously to allow the experimenter and theorist the opportunity 

to explore their impact on various thin film characteristics. As size decreases, stability 

becomes an important factor in determining the lifetime of both device shape and operation. 

Small structures inherently have high surface tension associated with the curvature of their 

edges [7,8]. Therefore, these "far-from-equilibrium" structures reshape in order to minimize 

the excess surface tension. The rate and extent of the equilibration process is pivotal in 

determining the stmcture's useful lifetime. By investigating the evolution of non-equilibrium 

structures produced by thin film deposition, surface scientists can gain fundamental insight 

into the kinetic processes governing atomic scale equilibration. 
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2. The Ag(lOO) surface 

One can imagine that uncovering and cataloging the many kinetic processes active 

during film growth and equilibration could prove to be quite difficult, especially in 

heteroepitaxial systems. Therefore, a natural choice is to begin by investigating a less 

complex system, namely Ag(lOO) homoepitaxial thin films. We utilize the Ag(lOO) surface 

for many reasons: the Ag(lOO) surface does not reconstruct upon annealing to high T; Ag is 

relatively unreactive and remains contaminant fi-ee during sample preparation and analysis; 

and island diffusion and reshaping rates occur on time scales accessible with our 

experimental metiiods. The Ag(lOO) surface, as shown in Figure 1, has four-fold symmetry, 

with rows of atoms separated by rows of four-fold hollow (4FH) sites. In reality, a perfectly 

flat Ag(lOO) crystal is impossible to achieve. Instead, the Ag single crystal is slightly 

misaligned firom the (100) direction, creating a series of monoatomic high steps separated by 

broad, flat terraces. Two step edge orientations predominate on this Ag(lOO) surface: the 

close-packed [Oil] orientation and the metastable [001] orientation. Both step edge 

orientations are illustrated in Figure 1. 

3. Overview of submoaoiayer Ag/Ag(100) film growth and equilibration 

The deposition, growth, and equilibration of submonolayer Ag films on Ag(IOO) can 

be described as follows. Film growth begins with the random deposition of Ag atoms onto 

the Ag(lOO) surface at a constant F (Figure 2a). Atoms impinge and irreversibly adsorb at 

the 4FH sites where atomic coordination is maximized with the substrate. At high T (> 200 

K), adatoms diffuse or "hop" firom one 4FH site to another (Figure 2b). Using Arrhenius 

Law, the hopping rate (h) for an adatom is defined as. 
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4FH site 2D island 

Figure 1. View of the (100) surface from above. Shaded circles are atoms in the upper layer. 

Non-shaded atoms lie in the lower layer. The close-packed [Oil] and metastable [001] step 

edge orientations are shown. Also illustrated is the square geometry of a small 2D island of 

adatoms. 

(a) 

Figure 2. Adatom motion during deposition and growth on the (100) surface. Possible 

moves include; (a) deposition and adsorption at 4FH sites; (b) diffusion across terraces; (c) 

nucleation of 2D islands; (d) downward diffusion at step edges leading to smooth growth; 

and (e) reflection away from the downward step edge causing imstable, 3D growth. 
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h=v -exp(-p Ed), (1) 

where v is the vibrational attempt frequency, Ed is the adatom activation barrier to terrace 

diffusion, p is (KT)"\ and K is Boltzmann's constant. Recent kinetic Monte Carlo (MC) 

simulations estimate that h ~ 10*^ s"^ at 295 K [9]. Experiments using high resolution low 

energy electron diffraction [10] and low energy ion scattering [11] yield Ej ~ 0.40 eV and v ~ 

10'^ s-'. 

Diffusing adatoms perform a random walk on the surface, interacting with surface 

atoms, with step edges, and with each other. Adatom-adatom collision results in the 

nucleation of two-dimensional (2D) islands at lower T (Figure 2c). At higher T, bond 

scission is operative and die rate of island nucleation is reduced. Early kinetic theories for 

submonolayer nucleation and growth [12,13] define a critical size, i, such that islands of i +1 

atoms are stable. Simulations by Bartelt and Evans predict that for Ag/Ag(100), i = 1 below 

380 K [14]. Therefore, dimers are stable and island nucleation is irreversible at T < 380 K. 

The size distribution and density of islands created during deposition is dependent on 

a range of film growth processes [15-17], a key element of which is the rate of capture of 

diffusing adatoms by individual islands. In Chapter n, we present a brief analysis of the 

nature of diffusion-mediated capture of adatoms by near-square 2D islands during deposition 

on Ag(IOO). Larger islands have larger capture rates, which are quantified by performing 

MC simulations using experimental island distributions. For a more extensive discussion on 

this topic, see reference [18]. 

Small islands continue to grow in size as diffusing adatoms are incorporated at island 

edges. Because the Ag(lOO) surface has square symmetry, the equilibrium island shape is 
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also a square, as illustrated in Figure 1. This is verified by constructing a Wulff diagram for 

a square lattice [19]. The underlying substrate defines the equilibrium structure, and a Wulff 

diagram superimposed upon the lattice predicts the equilibrium crystal shape, or island shape, 

on the (100) surface. A 2D cut through a 3D Wulff plot for the (100) surface yields a square 

with edges oriented along the close-packed [Oil] direction at 0 K. 2D islands of Ag adatoms 

on Ag(lOO) do indeed assume a near square geometry above 0 K, as will be seen in 

subsequent chapters. 

The average island density (Nav), which is experimentally measured after deposition, 

is defined as [12,13] 

Na 
^ f Y  

ex pIP -E]. (2) 

where F is the deposition flux in monolayers (ML)/s and x = E is defined as 
i + 1 

E = Z  Ed-
Hi (3) 

where Ej is the binding energy of the critical cluster. Ei is equivalent to the number of pairs 

of atoms in an island multiplied by the Ag-Ag bond energy. In the following chapters, we 

consider only irreversible island formation, where i = 1. Therefore, equation (2) can now be 

simplified to yield 

Na exp P 
Ed 

.fJ 
-X 

(4) 

for irreversible island formation. Note that a choice of F and T determine the time it takes 

after deposition for Nav to be established. From Nav, we define an average island size, Sav, 

measured in atoms/island as 
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where 6 is the film coverage in ML and a is the surface lattice constant for Ag (a = 2.89 A). 

Nav is measured in islands/A". 

After deposition is complete, a nonequilibrium ensemble of 2D islands exists on the 

surface. The surface seeks to lower the overall surface tension by reducing the number of 

step edges present at the interface. This is achieved by decreasing the number of islands on 

the surface, commonly known as coarsening or ripening of the adlayer. Traditionally, it was 

believed that all homoepitaxial systems with 2D islands coarsen by a mechanism know as 

Ostwald Ripening [20]. In Ostwald Ripening, large islands grow at the expense of small 

ones. Small islands are unstable and evaporate; their atoms diffuse across terraces and are 

incorporated into larger islands. This mechanism results in coarsening, since the overall 

number of island edges on the surface is decreased. Recently, independent Scanning 

Tunneling Microscopy (STM) experiments have shown that both the Ag/Ag(100) and 

Cu/Cu(100) systems coarsen through an entirely different mechanism at 295 K [21-23]. 

Coarsening of the adlayer instead occurs through the diffusion and subsequent collision and 

coalescence of islands with other islands and step edges. This alternative coarsening 

mechanism, referred to as "Smoluchowski Ripening", is discussed extensively in Chapter HI. 

Using STM, we investigate the post-deposition coarsening kinetics of distributions of Ag 

islands at 295 K. Coarsening behavior is analyzed with a mean-field rate equation, which 

reveals a strongly size dependent island diffusion coefficient. 

Island coalescence plays an important role in the coarsening process as well. After a 

diffusing island collides v^^th another island or step edge, a far-firom-equilibrium 
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nanostructure is created on the surface. Vacancy islands are created by depositing between 

0.7 and 0.9 ML of Ag [21]. Like adatom islands, vacancy islands have been shown to diffuse 

and coalesce with other vacancies and step edges on the surface. Often, 2D adatom and 

vacancy nanostructures have unusual geometries (see Figure 3). After collision, these 

nanostructures reshape in order to reduce the surface tension associated with their exposed 

edges. The rate at which reshaping occurs directly impacts the overall rate of coarsening 

after deposition. In Chapter IV, we analyze and quantify the reshaping rates of various initial 

nanostructure geometries using STM. Reshaping behavior is analyzed with lattice-gas model 

simulations to elucidate the underlying atomistic mass transport processes on the Ag(lOO) 

surface. 

4. Overview of Ag/Ag(100) multilayer film growth 

At equilibrium, homoepitaxial metal film growth is expected to proceed layer by 

layer since there is no mismatch between deposited atoms and substrate. In heteroepitaxial 

growth, where deposited material and substrate differ, 3D clustering of the deposited fihn 

usually occurs. Under realistic deposition conditions, multilayer film growth takes place far-

from-equilibrium. Consequently, sequential filling of layers does not occur and "kinetic 

roughening" of the film results. The balance between F and T determines the degree of 

kinetic roughening during film growth. To simplify this picture, we fix the deposition flux 

and vary T. This allows us to investigate the T dependent morphologies that occur when 

kinetic processes become subdued or inactive during film growth. 

On metal surfaces, an activation barrier to downward diffusion exists at step edges, 

often referred to as the Ehrlich-Schwoebel barrier [24,25]. On metal(l 11) surfaces, this 
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Figure 3. Large view STM images of (a) adatom nanostructures created by deposition 0.58 

ML of Ag (image size = 2700 x 2700 A); (b) vacancy nanostructures created by deposition of 

0.77 ML of Ag (3000 x 3000 A). The temperature is 298 K. 
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barrier is often high, resulting in inhibited downward transport of adatoms and rough 

Poisson-like growth for a broad range of T. Conversely, metal(lOO) surfaces generally have 

small step edge barriers, leading to relatively smooth multilayer growth. This is the case for 

Ag/Ag(100), which has a step edge barrier estimated to be 30 ± 5 meV [9]. Depending on 

the T, diffusing adatoms either have the energy to overcome the step edge barrier, travelling 

to a lower layer, or are reflected backwards, away from the step edge. Downward diffusion 

(Figure 2d) results in the filling of lower layers first and smooth film growth. Reflection 

away from the step edge leads (Figure 2e) to unstable growth and the formation of 

pyramidlike mounds exhibiting large roughness values. In Chapter V, we present the first 

STM images of mound formation in Ag/Ag(100) multilayer film growth. 

Below 200 K, film roughness surprisingly decreases with decreasing T. The 

mechanism responsible for this phenomenon in metal(lOO) multilayer growth is referred to as 

"downward fiinneling". Our STM results confirm previous MC simulation results by Bartelt 

and Evans [26], and are the first experimental evidence of downward funneling in a 

metal(lOO) system. At T below 135 K, we show that downward funneling becomes 

inhibited, resulting in a dramatic increase in multilayer film roughness. In this T range, 

deposited atoms 'hit and stick' on the surface, a mechanism we call restricted downward 

funneling. With extremely limited adatom diffusion, voids are incorporated into the surface, 

enhancing kinetic roughening. In Chapter V, we present STM images of multilayer film 

growth below 135 K and approaching OK. To date, this represents the first detailed analysis 

of multilayer film growth at ultra-low T. The experimental results are analyzed and 

compared to our newly developed MC model for film growth in the diffusion limited regime. 
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Additionally, the results presented in Chapter V represent the first comprehensive STM 

investigation of multilayer film growth at multiple T. 

Previous studies [27-33] have explored a number of universal scaling relationships in 

multilayer film growth. Relationships include film roughness, W, versus coverage having 

the form W ~ 0^, and the characteristic lateral length scale, L, versus time, t, having the form 

L ~ t". The exponents P and n are indicative of various growth mechanisms governing 

multilayer film morphology and evolution. The intent of developing such scaling laws is to 

find an exponent common to all multilayer film systems. In Chapter V, the values of P and n 

are determined at 230 K, the temperature where 25 ML Ag films grow the roughest. 

5. The scanning tunneling microscope 

In the aforementioned experiments, our principle surface analytical tool is the STM. 

Prior to the adoption of STM as an experimental tool, metal film growth has primarily been 

investigated using diffraction techniques such as low-energy electron diffraction (LEED), ion 

beam scattering, and reflection high-energy electron diffraction (RHEED). These techniques 

provide microscopic surface information that first must be derived and interpreted from 

reciprocal space diffraction patterns. STM images, on the other hand, can be directly 

examined, revealing real-space microscopic surface structures and growth characteristics. 

An excellent summary of STM operation and applications can be found in C. Julian Chen's 

book [34], "Introduction to Scaiming TunneUng Microscopy." 

We utilize the STM for many reasons. First, the STM (generally) provides better 

resolution than its nearest competitor, the atomic force microscope (AFM). Unlike AFM, 

STM requires electrical current flow between the substrate and microscope. Metal 
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substrates, being excellent conductors of electricity, are ideal for use with the STM. Second, 

the STM can operate in an ultra-high vacuum (2 x 10"^° to 4 x 10"'^ Torr) environment, which 

is necessary when undertaking contaminant-free film growth experiments. Third, the STM 

produces 3D images of the surface's electron density contour. This yields information on 

vertical length scales, critical in characterizing multilayer film morphology. Finally, the 

STM provides sequential real-time images of surface dynamics, which is important when 

analyzing and modeling the mass transport processes of the adlayer. 

It should be noted that the STM poses some experimental problems as well. STM 

resolution or sensitivity is highly dependent on the quality of the STM tip. In general, the 

exact structure of the STM tip is unknown. Therefore, the reproducibility of the STM tip is 

always a concem. Often, the tip structure changes from day to day, or during a single 

experiment. This makes it extremely difficult to perform reproducible experiments, and 

single experiments that last long periods of time. Typically, frequent calibration of the STM 

tip and tip preparation techniques, such as voltage and z-piezo pulses, are necessary to ensure 

accurate and reproducible results. Finally, when performing STM experiments below room 

T, the experimenter should be aware of additional complications with data acquisition. At 

reduced T, the metal substrate and STM tip contract, requiring both a finite time for 

equilibration and a recalibration of the vertical scale. Also, cold temperatures can adversely 

affect the tip-sample turmeling junction, causing drift and resolution loss in the scanning 

direction. Regardless of the many pitfalls of STM operation, nothing is more thought 

provoking than a good STM image. 
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6. Dissertation organization 

This dissertation includes three published papers and a fourth that will be submitted 

for publication. The first paper: "Formation and relaxation of 2D island arrays in metal(lOO) 

homoepitaxy," appears in volume 59, issue 1-4 of Progress in Surface Science on pages 67-

77, 1998. The second paper: "Smoluchowski ripening of Ag islands on Ag(lOO)," appears in 

volume 111, issue 11 of the Journal of Chemical Physics on pages 5157-5166, 1999. The 

third paper: "Evolution of far-from-equilibrium nanostructures formed by cluster-step and 

cluster-cluster coalescence in metal films" appears in volume 81, issue 14 of Physical Review 

Letters on pages 2950-2953, 1998. The fourth paper: "Complex temperature dependence in 

multilayer film growth," will be submitted to Science. Following the fourth paper are general 

conclusions and appendices that comprise a description of the experimental apparatus, the 

STM database, and other experimental results related to topics discussed in this dissertation. 
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n. FORMATION AND RELAXATION OF 2D ISLAND ARRAYS IN 
METAL(IOO) HOMOEPITAXY 

A paper published in Progress in Surface Science 

C.R. Stoldt, A.M. Cadilhe, M.C. Bartelt, C.J. Jenks, P.A. Thiel, and J.W. Evans 

Abstract 

We present a comprehensive analysis of both the formation of near-square islands 

during deposition in submonolayer metal(lOO) homoepitaxy, as well as the subsequent post-

deposition relaxation of these island arrays. We highlight recent fundamental advances in our 

understanding of the nucleation and growth of islands, as well as of the kinetic pathways 

controlling the relaxation of island arrays (including a study of the "collision" and 

coalescence of diffusing islands). Extensive Scanning Tuimeling Microscopy results are 

presented for the Ag/Ag(100) system at 295K, and these are analyzed utilizing kinetic Monte 

Carlo simulations of appropriate lattice-gas models. 
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1. Introduction 

The nucleation and growth of islands during submonolayer deposition is of broad 

technological importance [1]. Experimental data has been traditionally interpreted with 

mean-field rate equation theories which successfully describe the dependence of the mean 

island density, Nav, on deposition conditions, at least for low substrate temperature (T) where 

island formation is irreversible. However, it is now recognized that such theories fail to 

describe the characteristic shape of the island size distribution [2,3], or to correctly predict 

the transition to reversible island formation, with increasing T [3,4], These and other recent 

fundamental insights and advances have often come firom examining "simple" metal 

homoepitaxial growth systems, combining Scanning Tunneling Microscopy (STM) 

experiments [4,5] with kinetic Monte Carlo simulation studies of realistic nucleation models 

[3,6,7]. 

Another basic issue of interest is the post-deposition coarsening or equilibration of the 

adlayer, starting from the far-from-equilibrium island distribution created during deposition. 

The traditional expectation, at least for two-dimensional (2D) island distributions in 

homoepitaxial systems, is that coarsening is controlled by Ostwald ripening involving a 

diffusion-mediated transfer of adatoms from smaller to larger islands [8]. However, in some 

homoepitaxial systems, it has been observed instead that coarsening is dominated by the 

diffusion and subsequent coalescence of large islands [9,10]. This unexpected cluster 

diffusion [11,12] has prompted recent interest not just in its role in coarsening [9,10,13], but 

also in film smoothening [14], and in related issues of nanostructure evolution [15]. 

In this paper, we present an STM analysis of the nucleation and growth of near-

square islands during submonolayer deposition in Ag/Ag(lOO) homoepitaxy at 295K (see 
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Sec.3). Accurate values for mean island densities at 295K (where island formation is 

irreversible) are utilized to extract a refined estimate of the terrace self-diffusion barrier for 

Ag on Ag(lOO). We also present an analysis of the diffusion-mediated capture of deposited 

adatoms by islands. We find a dramatic non-mean-field nature to the island size dependence 

of capture, which derives fi'om a strong correlation between the size and separation of 

islands. This feature is related to the observed form of the island size distribution. In Sec.4, 

we also present STM studies of the post-deposition coarsening of Ag/Ag(100) adlayers with 

coverages between 0.06ML and 0.2ML at 295K. This coarsening process is dominated by 

diffusion and coalescence of large islands, and a suitably tailored and comprehensive study 

of its kinetics provides considerable insight into the size-dependence of island diffusion. 

Finally, we analyze in detail the process of restructuring of island shape following "coUision" 

of pairs of islands, which is a key component of the coarsening process. A summary of our 

findings is provided in Sec.5. 

2. Experimental details 

Silver was deposited on a Ag(lOO) crystal fi'om a resistively heated liquid-nitrogen-

shrouded source in an ultra-high vacuum chamber with a base pressure of 6x10"'' to 2x10"'° 

Torr. The chamber is equipped with an Omicron room temperature STM system. The STM 

images of island distributions used in our analyses were obtained on broad terraces (at least 

2000A wide). Images were obtained under conditions of low resolution, since we were 

primarily interested in determining the number, positions, and sizes of large islands over 

broad terrace regions, rather than examining atomic-scale structure. We also deliberately 

sacrificed resolution in our studies of cluster diffusion, coalescence, and coarsening, so as to 
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minimize the interaction between the STM tip and the islands. The first STM image was 

obtained typically 20 to 50 minutes after deposition, after which we monitored the 

subsequent time-evolution of the island motion or island distributions every 10 to 15 minutes. 

3. Nucleation and growth of islands during deposition 

Below, 0 denotes the coverage (in ML), h=vexp[-Ed/(kBT)] denotes the rate for 

adatom hopping across the terrace to each adjacent site, and F denotes the deposition rate (in 

ML per unit time), so 0=Ft. The density (per adsorption site on the fcc(lOO) surface) of 

diffusing adatoms is denoted by Ni, and of islands of s atoms is denoted by Ns. The rate of 

aggregation of diffusing atoms with islands of size s is denoted by Ragg(s)=hcrsNiN's, where <Js 

denotes the "capture number" for islands of size s. The rate of "direct capture" by deposition 

on top of or directly adjacent to an island of size s equals FksNs, where KS^s+4^s for near-

square islands. Then, for irreversible island formation, one has [1-3] 

dN,/dt« F(l-0)-2Ragg(l)-Is>iRagg(s), and dNs/dt« F(Ks-,Ns.,-KsNs)+Ragg(s-l)-Ragg(s), (3.1) 

with additional terms being required when island formation becomes reversible. Since most 

emphasis has been placed on the behavior of the mean island density, Nav=Zs>iNs, usually 

(3.1) are reduced to 

dNi/dt« F(l-0)-hcravNiNav, and dNav/dt = hai(Ni)^, where <Tav=Zs>icrsNs/Zs>iNs. (3.2) 
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However, the island size distribution, Nj, which contains far more information than 

Nav, is also of great interest. If Sav»0/Nav denotes the average island size, and if one assumes 

that the capture numbers have the scaling form Cs/cTav^CCs/Sav), independent of 0, then it 

follows that [2] 

Ns ~ 0(Sav)'^ f(s/sav), where f(x) = f(0) exp {Jo dy [{Ixs-1 )-dC(y)/dy]/[C(y)-Tny]}, (3.3) 

and cj=d(ln Sav)/d(ln t) is assumed constant. The key message to be obtained from (3.3) is that 

the form of the island size distribution is controlled by the dependence of adatom capture on 

island size. 

A. Mean island density behavior for Ag/Ag(100) at 295 K 

Data from previous STM studies [4] indicated that Nav« 1.9x10*^ F'' /site, with F 

between 0.002 and 0.1 ML/s (for a mean 0-value around 0.1 ML). The scaling exponent, 

X«0.31, describing variation of Nav with F, is slightly below the classic asymptotic value of 

1/3 obtained from integration of (3.2) for irreversible island formation. Simulations for 

irreversible formation of square islands [7] reveal that Nav ~ (F/h)^, with similar %, and with a 

fairly weak dependence on 0 around 0.1 ML. Detailed comparison with experiment implies 

that hw3xl0Vs at 295K, so Ed«0.38eV using valO'Vs [4], However, the STM data included 

several cases with low 0 around 0.03ML, where there can be significant coarsening of the 

adlayer before STM imaging (see Sec.4A), and with high 0 of 0.2ML or above, a significant 

fraction of adjacent islands could have merged as a result of growth, and then restructured to 
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form a single islands before STM imaging (see Sec.4B). Both these effects (which we 

attempted to account for in previous analyses) can lead to underestimation of Nav-

Extensive new data (involving a total of about 650 islands) with F between 0.005 and 

0.01 ML/s, and with coverages chosen closer to 0.1 ML (see Figure 1) to minimize the above 

effects, suggests a slightly higher Nav=« 2.4x10"^ FVsite, using x~0.31. This leads to a revised 

estimate of Ed a: 0.40eV, using v«10'^/s. This can be compared with predictions from a recent 

high-resolution LEED study of island separation versus T [16], and a low-energy ion 

scattering study of the onset of diffusion [17]. 

B. Adatom capture and the island size distribution for Ag/Ag(100) at 295 K 

As noted above, the dependence of diffusion-mediated adatom capture on island size 

controls the form of the island size distribution. We analyze this dependence for experimental 

island distributions of the type shown in Figurel with 0a:0.1 ML. This is achieved by 

performing Monte Carlo simulations, using the experimental island distribution, of the 

random deposition of atoms, and of their subsequent surface diffusion and irreversible 

capture by islands [18]. From such simulations, we can quantify the rate at which various 

islands capture atoms, and thus obtain CTs/cav versus s/sav (Figure 2a). Results are roughly 

consistent with the form of the island size distribution in Figurelb (where some smaller 

islands were lost due to coarsening). The quasi-linear increase of Cs with s for larger sizes is 

qualitatively distinct from the much slower increase predicted by mean-field theories (MFT), 

and derives from the feature ignored in MFT that larger islands have larger surrounding areas 

free of other islands [2,18]. This is confirmed by performing a standard Voronoi tessellation 

of the surface based on the island centers, i.e., points within a Voronoi cell (VC) associated 



www.manaraa.com

with a given island are closer to the center of that island than to the centers of other islands. If 

As is the area of the VC not covered by an island of size s, then Figure 2b shows that Ag/Aav 

versus s/sav has a similar form to that for (Js/c^av (cf Ref 18). 

Of course, being a purely geometric construction, the VC's cannot precisely describe 

adatom capture. A somewhat better Voronoi-type tessellation would be based on the distance 

from island edges (rather than centers). However, an exact description necessarily 

incorporates the physics of diffusion-mediated capture by analyzing the equation didi Ni a F 

+ Dten-V'Ni = 0, for the quasi-steady-state density of deposited adatoms which diffuse to and 

are irreversibly captured at island edges (where one imposes the boundary condition Ni=0) 

[18]. Here, DterT=a"h is the terrace diffusion coefficient, where a=2.89A is the surface lattice 

constant. From the solution of this steady-state diffusion equation, each point on the surface 

is uniquely assigned to a specific island by following the flux lines from that point to an 

island. In this way, one can construct a tessellation of the surface into "diffusion cells" 

(DCs), the areas of which are in exact proportion to the capture rates for islands (from 

Gauss' theorem). Such a tessellation is shown in Fig.3 for a small portion of the experimental 

island distribution, and is compared with the corresponding Voronoi tessellation. Note, 

however, that diffusion-mediated capture is stochastic: the probability that an atom is 

captured by an island is not unity inside its DC and zero outside, but rather decreases 

smoothly to zero away from the island [18], 
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4. Post-Deposition Coarsening and Relaxation Processes 

A. Coarsening via cluster diffusion and coalescence in Ag/Ag(100) adiayers at 295K 

Previous studies have demonstrated that coarsening in Ag/Ag(100) adiayers at 295K 

for coverages between 0.05 and 0.3 5ML is typically dominated by diffusion and subsequent 

coalescence of 2D islands [9,10]. Island diffusion coefficients have been shown to decrease 

with size at least below ss:350 like D(s) « Do s"", with a«l. 15 [10]. Thus, the rate of 

coarsening should depend strongly on the mean island size, which controls the mean island 

diffusion coefficient, Dav ~ D(Sav), as well as on the coverage, which controls the typical 

distance. Ledge, between island edges (i.e., the distance islands must diffuse before 

coalescing). One has that Ledge«(l-0''^)Lav, where Lav=a(Nav)'^^^ is the typical distance 

between island centers. Thus, the lifetime, T, of a typical island corresponds to the time to 

diffuse a distance Ledge, so it follows from Einstein's relation that (Ledge)" *2x4DavT, the 

factor of two arising since die '"target" island is also diffusing. Then, the mean-field rate 

equation for Nav becomes 

dNav/dt« -Nav/x ^ -8a-^ Do 0^(1-0"^)"- (Nav)'^", so Nav « [(No)-'-^ + (l+a)At]-"^'^''^, (4.1) 

where A=8a"" Do 0'"(l-0''^")'^, and No is the initial island density [9]. The latter result in (4.1) 

recovers the relation obtained in Ref. 13 for the exponent for asymptotic temporal scaling in 

terms of a. 

An effective method to assess the size dependence of cluster difflisivity is to perform 

tailored studies of coarsening with varying initial island size for roughly fixed separation 
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(i.e., deposit various coverages at roughly fixed F) [19]. Such data for the coarsening kinetics 

is shown in Figure 4 for three coverages, 0.06, 0.16, and 0.21 ML, corresponding to initial 

island sizes of 140, 340, and 495 atoms, respectively. The kinetics slows dramatically with 

increasing island size, indicating that the effect on coarsening of the reduction of the island 

diffusion coefficient dominates the opposite effect of closer island edges. In fact, the 

experimental data can be reasonably fit choosing a»1.5 and Do ~ 1-75 A"/s. A more detailed 

analysis is postponed for a simulation study, where we can account for spatial correlations in 

the island distribution [1,7] which are ignored in the above mean-field treatment. 

B. Coalescence dynamics for individual pairs of "colliding" clusters in Ag/Ag(100) 

at 295 K 

We consider the dynamics of coalescence of pairs of islands which collide either 

comer-to-comer (see Figure 5a) or side-to-side (see Figure 5b). These 2D sintering processes 

are of interest not only as an integral component of the overall coarsening process, but also 

for at least two other reasons. First, the restructuring of such far-firom-equilibrium 

nanostructures can provide considerable insight into the underlying mass transport processes 

at step edges [15]. Second, islands also collide as a result of their growth during deposition, 

and the restructuring of these configurations influences the subsequent multilayer growth 

process if it is significant on the time-scale of deposition [20]. We analyze this behavior with 

simulations of a "perimeter diffusion" model, wherein restructuring occurs as a result of 

atoms hopping along the step edge without detaching with various energy barriers shown in 

Figure 6a. 



www.manaraa.com

25 

For two roughly equal sized clusters colliding comer-to-comer (Figure 5a), we 

consider the growth of the width of the connecting meniscus-like neck. Simulations reveal a 

rapid initial increase, followed by a more sustained quasi-linear growth (Figure 6b,c), with 

rate varying inversely with combined island area (Figure 6d). Experimental behavior is 

matched by simulations with a barrier for diffusion along straight [110] step edges of 

Ee=0.20eV, and an effective nearest-neighbor interaction of Jef[=0.275eV. 

5. Summary 

We have presented analyses of both the formation and relaxation of arrays of 2D 

islands created by deposition of Ag on the Ag(lOO) surface at 295K. Our application of a 

combination of STM experiments, together with kinetic Monte Carlo simulations, leads to 

flmdamental advances in our understanding of these processes, together with a determination 

of key system parameters. The basic phenomena and concepts discussed here will certainly 

apply more generally to metal(lOO) homoepitaxy, and often be relevant for a variety of other 

thin film systems. 
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Figure Captions 

1. (a) 2D Ag island array (6=0.12ML, F=0.005ML/s); (b) normalized island size 

distribution, f. 

2. (a) as/Cav versus s/sav; (b) As/Aav versus s/sav, for the experimental island arrays 

(symbols). Solid lines are obtained from simulations of a canonical model for irreversible 

island formation (of. Ref 7). 

3. Contours of equal adatom density from solution of the steady-state equation for 

deposition, diffusion, and capture (thin lines); diffusion cells (thick lines); Voronoi cells 

(dashed lines). 

4. Nav/No vs. t for 0 = 0.06, 0.16, 0.2IML, and No=4.2xlO'^, 4.7x10"^, 4.2x10"^/site, 

respectively. 

5. (a) Comer-to-comer; (b) side-to-side coalescence of clusters. Image size is always 35x35 

nm . 

6. (a) Edge hopping processes and associated activation barriers; (b) simulated 

configurations for comer-to-comer coalescence of two 20x20 clusters; (c) time-

dependence of the neck width for various cluster sizes; (d) rate of growth of the neck 

width vs. inverse area of the combined cluster. 
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(a) 

0 min. 2 min. 29 min. 150 min. 

(b) 

0 min. 5 min. 22 min. 127 min. 

Figure 5 
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in. SMOLUCHOWSKI RIPENING OF Ag ISLANDS ON Ag(lOO) 

A paper reprinted with permission from THE JOURNAL OF CHEMICAL PHYSICS 
Copyright 1999, American Institute of Physics 

C.R. Stoldt, A.M. Cadilhe, C.J. Jenks, J.W. Evans, and P.A. Thiel 

PACS Numbers: 68.35.Fx, 82.20.Mj, 61.16-Ch 

Abstract 

Using scanning tunneling microscopy, we study the post-deposition coarsening of 

distributions of large, two-dimensional Ag islands on a perfect Ag(lOO) surface at 295K. The 

coarsening process is dominated by diffusion, and subsequent collision and coalescence of 

these islands. To obtain a comprehensive characterization of the coarsening kinetics, we 

perform tailored families of experiments, systematically varying the initial value of the 

average island size by adjusting the amount of Ag deposited (up to 0.25 ML). Results 

unambiguously indicate a strong decrease in island diffusivity with increasing island size. An 

estimate of the size scaling exponent follows from a mean-field Smoluchowski rate equation 

analysis of experimental data. These rate equations also predict a ratjid depletion in the initial 

population of smaller islands. This leads to narrowing of the size distribution scaling flmction 

from its initial form, which is determined by the process of island nucleation and growth 

during deposition. However, for later times, a steady increase in the width of this scaling 

fiinction is predicted, consistent with observed behavior. Finally, we examine the evolution 
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of Ag adlayers on a strained Ag(lOO) surface, and find significantly enhanced rates for island 

diffusion and coarsening. 

1. Introduction 

The number of applications for epitaxial materials continues to increase, and with this 

increase has come more stringent requirements on the quality and properties of these 

materials. As a result, atomic-level control in the fabrication of nanostructures, and 

assessment of their stability, is becoming crucial. Surface science continues to confront this 

issue through studies of flmdamental processes in the growth and equilibration of epitaxial 

films [1]. To gain the most complete picture of these processes, a common strategy is to 

begin by investigating less complex systems, one particularly simple example of which is 

metal(lOO) homoepitaxial thin films. 

In the submonolayer regime, the key processes controlling homoepitaxial film growth 

and equilibration can be described as follows. During film grov»lh, atoms adsorb irreversibly 

on the surface, then rapidly diffiise, colliding with each other to nucleate two-dimensional 

(2d) islands. Islands continue to grow in size as additional adatoms are incorporated. The 

ensemble of islands thus created on the surface constitutes a far-from-equilibrium state of the 

adlayer [2]. This state then undergoes post-deposition equilibration, during which the excess 

surface free energy associated with island edges is reduced by decreasing the number or 

density of islands, and thus increasing their mean size (that is by coarsening or "ripening" of 

the island distribution). 

Traditionally, "Ostwald ripening" was believed to constitute the dominant kinetic 

pathway or mechanism for adlayer coarsening in homoepitaxial systems with 2d islands [3]. 
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During Ostwald ripening, diffusion-mediated mass transport of adatoms (or vacancies) across 

terraces between 2d islands allows for the growth of large islands at the expense of small 

ones. Scanning Tunneling Microscopy (STM) studies have revealed that indeed Ostwald 

ripening dominates the coarsening of island distributions for Ag/Ag(l 11) at 295K [4], for 

Cu/Cu(l 11) between 300K and 355K [5], and for Cu/Cu(100) at 343K [6]. In constrast, for 

Ag/Ag(100) and Cu/Cu(100) at 295K, STM studies revealed that adlayer coarsening is 

typically dominated by the diffusion, and subsequent collision and coalescence of "large" 2d 

islands [7,8]. It is natural to describe this alternative coarsening mechanism as 

"Smoluchowski ripening", recalling the long-established and extensive use of Smoluchowsid 

rate equations [9] to analyze various other diffusion-mediated coagulation processes. 

The latter observations of Smoluchowski ripening on metal surfaces have motivated 

considerable interest in the process of diffusion of large 2d islands or clusters in its own 

right. Most studies to date have explored scaling relationships for the island diffusion 

coefficient, D(s), versus island size, s, of the form D(s) « D* s"^ (for sufficiently large s). 

Here, 's' denotes the number of atoms in the island, and D* is a temperature-dependent 

prefactor which reflects the magnitude of the diffusion coefficient for islands of a few atoms. 

An early mean-field-type theoretical treatment [10] provided a direct (but over simplistic) 

relationship between the exponent, 'a', and the dominant atomistic mechanism underlying 

diffusion: a=3/2 for "perimeter diffusion" (PD) involving hopping of atoms along the island 

periphery; a=l for "terrace diffusion" (TD) involving correlated detachment and 

reattachment of atoms from the island perimeter (or diffusion of vacancies through the 

island); and a=l/2 for "evaporation and condensation" (EC) involving uncorrelated 

detachment and attachment of atoms. However, pioneering simulation studies by Voter [11], 
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as well as more recent and extensive simulation studies [12, 13], and also recent theoretical 

[14] and experimental [8] investigations, have shown that these simple fractional values for a 

are not always realized. Nonetheless, it seems that larger exponent values still indicate that 

PD is dominant. 

There is also a long history of analyses of processes involving coarsening of 

distributions of clusters on surfaces. Most have focussed on Ostwald ripening [3], although 

there were a number of studies particularly in the 1970's of Smoluchowski ripening for three-

dimensional (3d) islands [15-17]. The latter, which are more closely related to this study, 

included analysis of not just mean island size, but also the evolution of the island size 

distribution including such features as its dispersion [15,16]. Related theoretical analyses 

employed mean-field Smoluchowski rate equations. More recent theoretical studies of 

Smoluchowski ripening have focused on arrays of 2d islands (motivated by the experimental 

studies mentioned above [7,8]), often employing kinetic Monte Carlo simulation to anaiyze 

suitable models, and thus avoiding the limitations of mean-field treatments [18-20]. The most 

sophisticated such studies [20] incorporate simulation results for island diffusivity, and have 

been generalized to allow for a competing Ostwald ripening pathway. One particularly 

simple but important relationship for Smoluchowski ripening follows from the mean-field 

analysis (and is confirmed in simulation studies): the temporal scaling exponent, p, for the 

mean island size, Sav~t^, is related to the size-scaling exponent, a, for cluster diffusivity by 

P=l/(l+a) [19]. Here, Sav is measured in numbers of atoms, and the temporal scaling applies 

only for "long" times. 

In this paper, we consider exclusively coarsening of 2d islands in tlie Ag/Ag(100) 

system at 295K combining STM experiments with theoretical modeling. As noted above. 
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diffusion of large 2d near-square clusters has been observed in this system, and coarsening is 

dominated by Smoluchowski ripening [7]. A comprehensive analysis of cluster diffusion, 

monitoring the relative position of roughly equal sized pairs of clusters, yielded an estimate 

of a=1.14 with a chi-squared uncertainty of ±0.05 [8]. However, there is considerable scatter 

in the experimental data, an intrinsically large uncertainty in values for difflisivity, and 

additional uncertainty in island sizes. Thus, the uncertainty in a may be larger, and values up 

to at least 1.3 plausibly fit the data. Interestingly, observation of a single coarsening run over 

an extended period of about 28 hours yielded an estimate of PaO.466 [8], consistent with 

a=1.14. hi this study, the rate of evaporation of adatoms from island edges was estimated 

independently and found to be sufficiently small that associated TD and EC mechanisms 

must be inoperative [8]. Thus, cluster diffusion was assumed to be dominated by PD in this 

system. 

Another possibility was suggested in a recent simulation study of the diffusion of 

large 2d Cu clusters on Cu(lOO), which revealed a crossover with increasing island size from 

PD to TD mediated by vacancy diffusion through the cluster [13]. It was suggested that this 

behavior may be generally applicable for other metal(lOO) homoepitaxial systems, including 

Ag/Ag(100) [13]. However, it has been noted that the relative dominance of PD versus 

vacancy TD will be strongly sensitive to the magnitude of rate for vacancy diffusion relative 

to the various PD rates, as well as to the cluster size [21]. From this perspective, the study in 

Ref.[13] might be somewhat biased towards vacancy TD, as it incorporates a relatively low 

choice of activation barrier for vacancy diffusion [22-25]. Thus, there is still some 

uncertainty as to the mechanism for diffusion of large Ag clusters on Ag(lOO). 
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A key experimental challenge in coalescence studies is to obtain sufficiently good 

statistics for a detailed quantitative analysis. Difficulty arises due to the intrinsically high 

fluctuations or "noise" in the underlying cluster diffusion and coalescence processes, (hi this 

respect, Monte Carlo studies have an advantage in that noise is more easily assessed and 

reduced by extensive simulation trials.) One typically neglected problem in experimental 

studies of the coarsening kinetics is that there are strong temporal correlations, i.e., the 

number of islands always strictly decreases with time. A smooth decrease in island density 

with time hides the fact that a quite different behavior could result from repeating the 

experiment from the same initial island distribution (so, e.g., it is difficult to assess the 

uncertainty in (3 from a single run). Another problems is that despite the recent interest in 

island diffiision and coarsening in metal homoepitaxial systems, ordy limited and selective 

studies of coarsening kinetics have been performed. Consequently, in this study, we address 

these shortcomings by performing tailored families of experiments, wherein we 

systematically varying the initial value of the average island size by adjusting the amount of 

Ag deposited (up to 0.25 ML). The entire family of curves for average coarsening kinetics 

should vary smoothly (in fact, analytically), so deviations in experimental data from this 

trend reflect noise. Also, there is sufficient information in the variation of entire family of 

curves that one can directly assess size dependence of difflisivity. We also make use of a 

Smoluchowski rate equation to quantitatively relate the decrease in the mean island density 

to island difflisivity. 

Analysis of island size distribution, and its evolution, is of course much more 

statistically demanding than analysis of just the mean size. The most extensive previous 

studies for Smoluchowski ripening have been for 3d islands, and have typically identified the 
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natural increase in the mean size and associated broadening of the distribution during 

coarsening [3]. Related theoretical studies invariably focus on the asymptotic evolution and 

shape selection [26]. However, little effort has been made to assess the evolution in the 

intrinsic shape of island size distribution, as characterized by the appropriate scaling 

function. This transient behavior is of particular experimental relevance, as the asymptotic 

regime may not be accessible, and as it allows assessment of the extent of the early changes 

occurring before first STM observation. The latter is crucial in order to correctly surmise the 

"initial" post-deposition form of the size distribution for appropriate comparison with 

predictions of nucleation theory, (hi fact, the form produced by the nucleation and growth 

process has only been understood very recently [27-29].) Thus, we characterize the initial 

shape evolution in this paper. To this end, we find it instructive to consider the variance of 

the scaling function (as opposed to the dispersion of the size distribution considered 

previously [15,16], the behavior of which is driven by the increase in the mean island size). 

Reasonably accurate experimental determination of this variance is viable, in contrast to the 

full shape of the size distribution. 

Finally, we report experimental data revealing that surface strain can have a strong 

influence on island diffusion and thus Smoluchowski ripening on large terraces. This 

observation implies that some care should be taken in interpreting data for nominally 

unstrained surfaces. 

2. Experimental details 

Scanning Tunneling Microscopy has become the technique of choice for performing 

studies of island diffusion and adlayer coarsening in homoepitaxial metal adlayers. Its 
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inherent ability to image the metal surface with unparalleled resolution, and to record real

time changes in ensembles of 2d islands, makes it the ideal tool for investigating such 

processes. Our experimental data are acquired using an Omicron room temperature STM 

housed in an ultra-high vacuum chamber with a base pressure of 6 x 10'" to 2 xlO'^° Torr. 

The Ag(lOO) substrate is prepared through cycles of Ar ion sputtering and annealing to 700 

K. Contamination is minimal, based inspection of STM images and Auger spectroscopy. 

Silver is deposited on the substrate from a home-built, liquid-nitrogen-shrouded source, with 

the substrate temperature always held at 295 K. However, the deposition flux and deposition 

time can be adjusted to yield various coverages, and initial values for the mean island density 

or size. 

After deposition, the first STM image is typically obtained within 25-50 minutes. It 

should be noted that the island density can be significantly reduced (by 5-15%) due to 

coarsening before this image is taken [30, 31]. The subsequent time evolution of the system, 

discussed in detail in the following sections, is monitored at a rate of 2-3 min/frame. The 

tunneling parameters employed (voltage = 0.7-1.5 V, current = 0.3-0.5 nA) have been 

determined previously to minimize the STM tip-surface interaction [7, 31]. The island 

density and size distribution data in our analysis are obtained from the central portions of 

terraces wider than 1500 A in order to minimize the effects of step edges on island 

distributions. 

3. Experimental results and discussion 

hi the following discussion, a=2.89A denotes the surface lattice constant for Ag(lOO). 

Also, 9 denotes the time-invariant post-deposition coverage (measured in monolayers), Nav 



www.manaraa.com

43 

denotes the mean island density (measured in units of islands per adsorption site). Lav denotes 

the mean separation of island centers (measured in units of distance), and Sav denotes the 

mean island size (measured in units of atoms). These quantities are simply related by 

Lav=a(Nav)''^" and Sav=0/Nav- (1) 

Thus, Nav will decrease in time during coarsening, and both Lav and Sav will increase in time, 

from their "initial" post-deposition values, which we denote by Nav, Lav, and SaS, respectively. 

Typical sequences of STM images from two coarsening experiments are shown in 

Figs, la and lb for initial values, Sav, of the mean island sizes of 60 and 510 atoms, 

respectively. Both the general nature of evolution in these images, and the specific feature 

that ripening is more rapid in the case with smaller Sav, are consistent with the traditional 

perception that Ostwald ripening should dominate coarsening in metal homoepitaxial systems 

[3]. However, a detailed examination of the coarsening process, utilizing all of the 

experimental images, reveals that the contribution from Ostwald ripening is negligible, lying 

within the experimental noise. Instead, island diffiision, and subsequent collision and 

coalescence (or Smoluchowski ripening) produce essentially all of the coarsening [7]. This 

conclusion is supported by independent studies for Ag/Ag(100) and Cu/Cu(100) at 295K [8]. 

In order to most effectively assess whether island diffusion rates are size-dependent, 

it is natural to create initial island distributions with roughly fixed island separations. Lav, and 

varying mean island sizes, Sav- This is readily achieved noting a basic result from nucleation 

theory that the mean island density, Nav, is largely independent of coverage between 0.05 and 
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0.25ML [2]. More specifically, for irreversible island formation at fixed temperature, one has 

[2] 

Nav ~ so La? ~ a and Sav ~ 0 (2) 

This regime applies for Ag deposition on Ag(lOO) below about 3 lOK, and thus at 295K [31]. 

Thus, by depositing various amounts of Ag, at approximately constant flux. F, we maintain a 

roughly constant Nav and Lav, but can control the initial value of the mean island size, Sav-

Specifically, Sav varies roughly linearly with submonolayer coverage, 0, which in turn varies 

linearly with deposition time (for fixed F). In fact, by depositing between 0.01 ML and 0.25 

ML, we can readily access a broad range of initial values for Sav-

Each ensemble of islands thus created was then monitored at roughly periodic 

intervals to determine the decrease of island density, Nav, with time, thus generating a 

coarsening curve characteristic of a specific value of Sav (and of Lav). We plot families of 

such coarsening curves for varying Sav (and roughly fixed Lav)- In fact, Fig.2 shows three 

such families of curves (each family corresponding to a different value of F or Lav). The 

values of Sav, 0, Nav, and the actual initial number of islands observed, are summarized in 

Table 1. 

Based on the trends within each family of coarsening curves in Fig. 2, we can 

immediately assess the variation of cluster diffiision coefficient, D(s), with size, s. By 

increasing Sav (or 0), with fixed island center-center separation, LaS, the average separation 

between island edges is reduced, shortening the distance for islands to diffuse before 

coalescing. Thus, if D(s) were completely independent of s, the rate of coarsening should 
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actually increase with increasing Sav (or 0), due to this shorter distance. In contrast, the 

opposite behavior is observed in Fig.2, where the coarsening rate decreases strongly with 

increasing Sav (or 0). This can only be ascribed to a strong decrease in D(s) with increasing s. 

A more detailed analysis is presented in Sec. 4. 

Finally, we mention one significant issue pertinent for modeling data particularly for 

smaller island sizes or coverages. STM tip scans may have a tendency to disproportionately 

magnify small features [32]. This can result in an overestimation of 0 (and thus Sav), so it is 

important to try to correct for this effect before detailed comparison between theory and 

experiment. Of course, the inherently low resolution in STM caused by scanning large 

surface areas also produces larger uncertainty in 0 and Sav values for small adlayer coverages. 

4. Theoretical analysis of evolutioii of the mean island density 

The Smoluchowski rate equation approach [9], first advanced over 80 years ago, has 

been employed widely to describe the kinetics of coagulation, aggregation, reaction, and 

coarsening. As noted in Sec.l, this approach has been applied extensively to analyze the 

Smoluchowski ripening of 3d clusters on surfaces [15-17], but relatively little work has been 

done for 2d clusters. Thus, in this section, we present these standard mean-field rate 

equations, together with a minor refinement, in order to analyze the coarsening data of Sec.3. 

Extending the notation introduced in Sec.3, we let Ns denote the density (per 

adsorption site) of islands of s atoms. Then, the mean-field Smoluchowski rate equations for 

these island densities have the generic form [9,15-19] 

d/dt Ns = '/2 Zs'̂ "=s K(s',s")Ns'Ns" - Is- K(s,s')NsNs., (3) 
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where K(s,s') describes the rate of collisions between islands of size s and s'. Assuming tliat 

this rate has the form K(s,s')=k(s)+k(s'), these equations can be contracted to an equation for 

the mean island density (per adsorption site), Nav=SsNs, of the form 

d/dt Nav = -Nav/t, where l/T=2]sk(s)Ns=kavNav. (4) 

Here, x corresponds to the typical Ufetime of a diffusing island, and we have defined 

kav=Ssk(s)Ns/Nav. The equation (4) is not closed (without further approximation), but rather 

represents the first in a hierarchy of equations for various moments of Ns (see Appendix A). 

Usually, k(s) is related to the diffusion coefficient for islands of size s, often invoking a 

detailed analysis of diffusion-mediated aggregation [9,33]. Then T is inversely proportional 

to some mean diffusivity. Given the limitations of even sophisticated mean-field treatments 

of capture (see below), we prefer a simpler treatment which accounts for the often neglected 

(but important) feature that the linear dimension of coalescing islands is often a significant 

fraction of their separation. By so doing, we directly reveal the strong dependence of T on 0, 

in addition to its dependence on the mean island diffusivity. 

First, we observe that for 2d near-square islands, the mean separation between island 

edges (see Fig. 3) has the form Ledge=(l-^0''~)Lav, where the geometrical factor, c, is 

determined by the details of the island distribution. It will be approximated by unity in our 

analysis below. Then, for a diffusing island to reach another island, we note that it typically 
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needs only travel a net distance Ledge, rather than the longer distance Lav- Thus, according to 

the Einstein relation, one has [7, 34, 35] 

(Ledge)' « 2(4Dav)T. (5) 

Here, Dav denotes the mean island difflisivity, and the factor of two outside the parentheses 

arises since both islands involved the coalescence event are mobile. Solving this equation for 

the lifetime, T, and substituting into (4), reveals that [34] 

d/dt Nav = -8a-- Dav( 1 -cQ (Nav)^ (6) 

A simple correspondence with the Smoluchowski equations (3) can be made by assigning 

k(s) = 8D(s) (l-c0'^-)--. However, a more precise form for k;(s) would be based on an estimate 

the typical separation between the edge of an island size s and other those of islands (rather 

than just on the average. Ledge)- Below, we adopt the further approximation 

Dav = SsD(s)Ns/Nav = D(Sav), where Sav=2sSNs/Nav=G/Nav, (7) 

which becomes precise for narrow island size distributions. See Appendix A. From the 

assumed form, D(s)a:D*s'", one obtains Dav«D*0°(Nav)'^- Then, substitution into (6) and 

integration yields 
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Nav ^ [(Nav) + (1+ a)At] -P, where P=l/(l+a), (8) 

and where A=8(a)'^ D*0'*^( 1-0 and again Nav is the initial island density. 

The experimental coarsening data presented in Sec. 3 can be reasonably fit by 

choosing a ^l.S, with a corresponding D*=:50 A'/s. The coarsening curves generated fi-om 

(8) for these parameters are shown as solid lines in Figs. 2a-2c. Fig. 4 provides some 

assessment of the sensitivity of the fit by showing rate equation curves with a-values of 1.0, 

1.25, 1.5, and 1.75, for one family of experimental coarsening curves. Fits for a=1.5 and 

1.75 are comparable, but the smaller value of 1.25 seems to produce too weak a s-

dependence to D(s) to describe the dramatic increase in coarsening rates upon decreasing Sav 

to 40 atoms. However, the uncertainties in estimates of 0 and Sav are greatest for small cluster 

sizes. Also, as noted in Sec.l, the magnitude of the noise or uncertainty in the experimental 

data is hidden by strong temporal correlations in Nav in each coarsening experiment. Thus, 

the uncertainty in our estimate of ots:1.5 is substantial, perhaps ±0.25. This a-value is larger 

than the previously reported value of a=1.14 (and a corresponding D*=18.5 A^/s) [8], but 

there is no clear inconsistency given the substantial uncertainties (see also Sec.l). We plan a 

subsequent analysis of these coarsening processes using Monte Carlo simulation, which will 

elucidate the intrinsic noise in the coarsening process, and thus allow better assessment of 

uncertainties in a-estimates. These simulations will also account for spatial correlations in 

the island distribution, which are ignored in the rate equation approach. 

Finally, we comment briefly on our previous modeling of coarsening data. In Ref.[7], 

we neglected the size dependence of island diffusivity, but accounted for coverage 
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dependence of the lifetime T. A reasonable fit to coarsening data was obtained because we 

only compared situations with similar mean island size (and thus Dav), but differing mean 

island separations. 

5. Evolution of the shape of the island size distribution 

It is common to express the island densities, Ns, in the scaled form [27,28] 

Then, the scaling function 'f describing the shape of the island size distribution satisfies 

where CT(t) denotes the standard deviation or width of the scaling function. The first two 

normalization conditions follow fi-om the constraints SsNs=Nav, and SssNs=0. In (10), we also 

use x=s/sav to denote the natural scaled island size variable. 

There have been extensive studies [2] of the "initial" shape of the size distribution, 

f(x,0)=fo(x), produced by the nucleation and growth process, although its form was only 

recently understood [28,29]. Such distributions have a significant population of small islands 

(compared with the average size) [27], particularly for irreversible island formation, which 

applies for the Ag/Ag(100) system at room temperature [31]. Separate theoretical studies of 

coarsening have demonstrated that a distinct shape, determined by the details of the 

coarsening process, is selected for long times [3, 19, 26]. In particular, for Smoluchowsld 

Ns ~ 0(sav)'"f(s/sav, t), for large Sav (9) 

Jo'°f(x, t)dx = Io"xf(x, t)dx =1, and Jo'°(x-l)"f(x, t)dx =C5-(t)", (10) 
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ripening, tliis selected shape is determined by the size-dependence of cluster diffusivity. See 

Ref.s [19], [26], and Appendix B. Here, we are naturally interested in the evolution of f(x,t) 

from the form fo(x) induced by cluster diffusion and coalescence with the observed strongly 

size-dependent cluster diffusivity. Intuitively, one expects a rapid initial depletion of these 

smaller islands, due to their higher mobility, and thus an associated rapid and significant 

change in shape of f(x,t). 

From the experimental perspective, there are two key challenges with analyzing the 

island size distribution. First, as noted in Sec.2, a significant period of time elapses after 

deposition ceases and before the first STM image is acquired, so any rapid changes may not 

be seen. Second, as noted in Sec.l, typically one cannot obtain sufficient data to reduce the 

intrinsic statistical noise to the extent needed to allow accurate determination of the shape of 

the island size distribution (or its evolution). Because of the latter, our experimental analysis 

focused on evolution of the width, <T(t), of the scaling function. 

To quantify the evolution of the island size distribution, and of a(t) in particular, we 

integrate the Smoluchowski equations (3) for the island densities, Ns, and from the results 

extract f(x,t). For a more direct analysis of the evolution of f(x, t), see Appendix B. We 

assign cluster collision rates consistent with cluster diffusivity D(s)=D*s"", choosing a=1.5 

and D*=50 A~/s, and select an initial size distribution based on nucleation theory, as now 

discussed in more detail. For Ag/Ag(100), experimental data suggests that the formation of 

near-square islands is effectively irreversibly at 295K, and that cluster diffusion does not play 

a significant role during this process [31]. Simulations appropriate for this scenario show that 

fo(x) has the characteristic monomodal form: it has a maximum value at x=xnmx~l-l of 

fo(Xirax)«0.78, decreasing to a minimum of about 0.30 as x decreases to xa0.02 (before 
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increasing slightly at x=0), and a variance of a~a:0.24 [29]. With this initial distribution, we 

find that the variance, cT(t)", at first decreases slightly (to just below 0.2) before slowly 

increasing. However, we shall see below that experimentally observed minimum values for 

CT" are around 0.1, but with a large uncertainty (cf Appendix C). This suggests some 

modification of the above choice of initial size distribution is appropriate. PreWous studies 

have shown that some mobility of dimers and other small clusters during deposition can 

significantly modify this distribution, without affecting the scaling of Nav [36]. Specifically, 

small cluster mobility reduces fo(0), increases fo(Xmax), and produces more rapid decay of f(x) 

for X above Xmax, thus reducing CT". (The onset of reversibility during island nucleation has the 

same effect [31, 37].) Such a modified choice of fo(x) with a^«0.18 is used below. 

Fig.5a shows the results for the evolution of f(x,t), choosing an initial fo(x) as 

described above, and choosing 0=O.16ML and Nav =5.1xl0~*/site (so Sav =315 atoms). We 

find significant evolution of f(x,t) from the initial form fo(x) in the first several minutes, with 

a somewhat narrower form depleted of small islands being achieved after only about VZ-VA, 

hour. This latter form (highlighted in Fig.6a at 50 min.) is consistent with experimental data 

in Fig.5b obtained from analysis of STM images of island distributions (with 420 islands) on 

broad terraces with the same 0 and Nav obtained about 50 min. after deposition. An important 

conclusion from this study is that caution is necessary when comparing experimental island 

distributions measured "just after" deposition with theoretical predictions from nucleation 

theory [31]. Even in the "short" time required to obtain the first STM image, there can be 

significant evolution of the size distribution away from its "initial" post-deposition form. 
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equation predictions for the evolution of aCt)" for three cases with F=0.003ML/s and 0=0.02, 

0.05, and 0.08 ML (see Table Ic). The initial values for Sav in the rate equation analysis are 

chosen as 55, 138, 268 atoms to recover reported experimental values at the initial 

observation time (of around 50 min.) of 60, 140, and 270 atoms, respectively. The rate 

equation predictions reveal an initial decrease from our chosen initial value of cr^=0.18 to 

about 0.16, followed by a much slower increase. Given the substantial experimental 

uncertainties in estimating c^-values (see Appendix C), overall behavior is consistent with 

experimental observations (where an initial decrease presumably occurs before the first data 

point). The consistent slow increase in a" for longer times reflects the gradual development 

of a "slowly decaying tail" on the distribution for larger x. This feature is characteristic of the 

asymptotic long-time form, fo(x), which has a substantially larger value of cj" than does fo(x). 

See Appendix B. 

6. Surface strain and its influence on island diffusion and coarsening 

The effect of surface strain on adsorbate diffusion and crystal growth continues to 

attract interest. Long ago, Bauer developed thermodynamic criteria for near-equilibrium 

heteroepitaxial film configurations, where strain occurs due to lattice mismatch [38]. 

However, more recent studies have considered situations where heteroepitaxial growth is 

dominated by kinetics [39], In homoepitaxial systems, one inevitably encounters surface 

strain induced by defects and dislocations. Can the resulting stresses affect the kinetics of 

surface processes? In Fig.7, an STM image is shown following the deposition of 0.18 ML of 
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Ag on Ag(lOO) producing a distribution of large islands with Sav «490 atoms. In the center of 

the image is a strained, oblong-shaped region, with a maximum height of approximately 0.7 

A above the unstrained portion of the surface. The origin of the strain is undetermined. The 

coarsening kinetics for islands around this region is displayed in Fig.8. The central 

observation is that the coarsening is much faster than predicted by mean-field rate equations 

of Sec.3 with a=1.5 and D*=50 A"/s (dashed line in Fig.8). The observed coarsening can be 

reasonably described by rate equations using D*=250 A~/s, keeping a=l .5 (solid line in 

Fig.8). This five-fold increase in D* produces a corresponding increase in the coarsening rate 

of roughly five times. Note that the choice a=1.5 is maintained for simplicity, but a different 

size dependence firom unstrained adlayers is quite plausible (see below). One conclusion 

fi"om these observations is that undetected strain could "corrupt" experimental estimation of 

D(s) versus s for nominally unstrained surfaces. 

To elucidate our observations, we apply some ideas developed in recent analyses of 

the role of surface strain in heteroepitaxial film growth. In studies of the formation of 

strained islands, it was proposed that the barrier for adatom detachment or dissociation firom 

island edges, EQISS. should be reduced by the strain energy per adatom of the island [40]. 

This strain energy/atom increases with island size. We relate these observations to PD-

mediated cluster diffusion as follows. Barriers for detachment, EDISS, are roughly given by 

the sum of the terrace diffusion barrier, Ed, plus a multiple of an effective nearest-neighbor 

interaction, J; those for perimeter diffusion, Epo, are the sum of the barrier for diffusion along 

close-packed <110> edges, Ee«Ed/2, plus a multiple of J [22, 23]. A strain-induced reduction 

of EDISS suggests a reduction in J, and thus a reduction in EPD (although other behavior is 

possible [41]). As a result, rates for cluster diffusion via the PD mechanism should be 
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enhanced by strain, the effect being greater for large islands as in Fig.7 where Sav « 490 

atoms. Considering the possibility that cluster diffusion is mediated by TD of vacancies, 

tensile strain (as expected here) tends to raise barriers for adatom diffusion [41,42]. However, 

it might lower barriers for vacancy diffusion, which would be needed for consistency with 

observed behavior. 

The general scenario of strain-enhanced cluster diffusion is also supported by a study 

of the motion of large vacancy clusters on Cu(l 11) surfaces, which found enhanced cluster 

diffusion upon addition of submonolayer amounts of Co [43]. This effect was attributed to 

the creation of local strain fields resulting from the substitution of Co with the top layer of 

Cu. Finally, we note that other novel mechanisms have been proposed to mediate the 

diffusion of strained heteroepitaxial islands, e.g., the formation of misfit dislocations 

separating portions of islands with adatoms occupying fee and hep sites on (111) surfaces 

[44]. Novel mechanisms may also operate for strained island diffusion on (100) surfaces. 

7. Conclusions 

In summary, we have performed tailored experiments of the coarsening of 2d Ag 

island distributions on Ag(lOO). Coarsening is dominated by cluster diffusion and 

coalescence at 295 K. The coarsening kinetics show that the island difflision coefficients 

must decrease strongly with size for clusters with tens to hundreds of atoms. Analyzing 

experimental data with an appropriate mean-field rate equation suggests a size scaling 

exponent of aw 1.5. Given this characterization of cluster difflisivity, we also use mean-field 

rate equations to assess the rapid initial evolution in the shape of the island size distribution, 

and the evolution over longer times of the width of the scaling fimction for the size 
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distribution. Since these rate equations do not account for spatial correlations in the island 

distribution, or elucidate the intrinsic noise or uncertainty in the experimental data for 

coarsening of finite ensembles of a few hundred (or less) islands, we plan to assess these 

issues in a future kinetic Monte Carlo simulation study. Finally, we analyzed coarsening 

behavior on a strained surface, showing that surface stresses can result in significantly 

increased cluster diffusion and coarsening rates. 

Acknowledgements 

We would like to thank Maria Bartelt for useful discussions. This work was supported 

by NSF Grant CHE-9700592, and by the Institute of Physical Research and Technology 

(IPRT) at Iowa State University. It was performed at Ames Laboratory, which is operated for 

the US Department of Energy by Iowa State University under Contract No. W-7405-Eng-82. 

Appendix A: Evolution of the moments of the island size distribution 

Statistical limitations often preclude reliable experimental determination of the island 

size distribution, Ns»:0(sav)~f(s/sav, t) versus s. Thus, it is natural to instead consider the 

moments 

Mj=Zs s'Ns NavCSavV Jo'dx X^ f(x,t), (11) 

or related quantities. For example, one has Nav=Mo, 0=Mi, and = M2Mo(Mi)"^ - 1. For this 

reason, we note that a direct description of the evolution of the Mj is possible. Assuming that 

K(s,s')=k(s)+k(s') and defining Kj=Ss s' k(s)Ns, fi-om the Smoluchowski equations (3) one has 
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d/dt Mo =-KoMo, d/dtMi=0, d/dt M2 = 2KiMi, 

d/dt MJ = 4K3M,+6K2M2+4KiM3,. .. (12) 

An analysis might proceed by expressing the Kj in terms of the moments, Mj, or in terms of 

related quantities. To this end, a Taylor expansion, k(s)=k(sav)+(s-sav)k'(sav)+, can be utilized 

to obtain, e.g., kav = Ko/Mq = k(Sav) + '/2(Sav)" cr"k"(Sav) +... See Ref.[16] for a different 

approach. 

In the lowest-order approximation, kav»k(Sav) [cf (8)], one obtains d/dt Mo »-

k(Sav)(Mo)~. One can readily develop more accurate higher-order approximations for narrow 

island size distributions (with cj«l), but this task is more difficult for broader distributions. 

For the choice k(s) oc s"**, the error in the lowest-order approximation for large Sav can be 

assessed firom the relation kav=^(t)-k(Sav), where /?(t) = Jo"x "*^f(x, t)dx. In the notation of 

Sec.4, this corresponds to Dav=^(t)-D(Sav), and an approximation is used in (8) and (9) 

replacing R by unity. 

Appendix B: Evolution of the Shape of ttte Island Size Distribution 

In the regime of large Sav, one can reasonably replace the discrete variable, s, by a 

continuous variable, and rewrite the Smoluchowski equations with K(s,s')=k(s)+k(s') as 

d/dt Ns « loads'[k(s')+k(s-s')]Ns'Ns.s' - Jo"ds'[k(s)+k(s')]NsNs'. (13) 
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We assume that k(s) oc s"*^, and thus can write k(s)=k(sav)(s/sav)'^. Using Ns«0(sav)"f(s/sav, t), 

we extract from (13) an equation for fin terms of the variable x=s/sav The LHS of (13) 

becomes 

d/dt Ns = 0 (sav)'-[(d/dt(lnsav)( -2f-  x-fx)  +  ft  ] ,  (14)  

and we note that 

d/dt(lnSav) = -d/dt(lnNav) = /2-k(Sav)Nav=l/T. (15) 

Similar analysis of the RHS of (13) yields an integro-partial differential equation for 

evolution of f(x, t) which has the form 

T a/5t f - X a/ax f-2f {'/2 fo^dx'[(x')""+(x-x')'"]f(x',t)f(x-x',t) - lo^dx'[(x)^+(x')" 

"]f(x,t)f(x',t)}, (16) 

where = Jo" x '"f(x, t)dx, as in Appendix A. Evolution via (16) ensures that both Jo°'dxf(x,t) 

and Jo°°dx xf(x,t) are time-invariant (and thus remain equal to their initial values of unity). 

Note that an analogous equation is available for the initial form, fo(x), of f(x, t) [28]. 

Also, the time-invariant version of (16) was obtained by Kandel [26] (apart from a 

typographical error). It is clear from (16) that the long-time limit, £o(x), of f(x, t) is 
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determined by a. An often quoted asymptotic estimate is [19] £o(x) ~ x'^exp[-(a+l)x], for 

which a^=0.4 when a=l .5. 

Appendix C: Uncertainty in experimental estimation of size distribution properties 

In analyzing experimental data, we estimate properties of the island size distribution 

from finite samples of M islands, where M«100-300. Thus, it is appropriate to assess the 

expected values and likely error in these estimates. Below we let E[X] denote the expected 

value of some measured quantity X , and V[X] its mean-square uncertainty or variance. The 

"standard error" in the estimate is just the square root of this variance. Here, we neglect 

spatial correlations in the island distribution. Of obvious interest is the estimate, Sav(M), from 

the sample of M islands of the exact average size, Sav(°o)=Sav. Then, one finds that 

E[Sav(M)]=Sav, and V[Sav(M)]=A(Sav)'/M, where A = a~ = Jo'°(x-l)"f(x, t)dx. (17) 

Thus, for typical CT"=0. 1-0.2 and M=100, the standard error in Sav(M) is only 3-4% of Sav 

Also of interest in this paper is the estimate, CT~(M), firom a sample of M islands of the 

vanance, <j (oo)=a~, of the distribution f. One has that 

E[A-(M)]=cj-(M-l)/M, and V[CT-(M)]=B/M, where B=loVf(x, t)dx -

[Jo"x'f(x, t)dx]\ (18) 
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For typical f where CT^=0. 1-0.2, one finds that B=0.4-l. Thus, for M=100, the standard error 

in CT^(M) is around 50% of cr^ ! 
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Figure Captions 

1. Sequences of STM images of the ripening of Ag island distributions on Ag( 100) for two 

coverages: (a) 0=0.02 ML, with Sav =60 atoms; (b) 6=0.21 ML with Sav =510 atoms. All 

images are 150 nm x 100 nm. 

2. Families of data illustrating the coarsening kinetics for three different fluxes: (a) F=0.011 

ML/s; (b) F=0.006 ML/s; (c) F=0.003 ML/s. Data points for each STM experiment are 

shown as various solid symbols labeled by sav-values. Corresponding behavior predicted 

from equation (8) with a=1.5 and Do=50 AVs is shown as solid curves. 

3. Schematic showing the key linear dimensions for a typical island distribution: the mean 

separation between island centers, Lav=(Nav)'''^; the mean island edge length, Rav=0''^"Lav; 

and the mean separation between island edges, Ledge=Lav-cRav=(l-c0'^)Lav, where c is of 

order unity. 

4. Best fits to the family of data for the experimental coarsening kinetics with F=0.003 

ML/s [part (c) in Fig.2] from the rate equations with various a = 1.0 (a); 1.25 (b); 1.5 (c); 

1.75 (d). Solid symbols show experimental data, and solid curves show predictions from 

equation (8). 

5. (a) Rate equation prediction for the evolution of the shape, f(x, t), of the island size 

distribution using an initial form, fo(x), with a variance of 0.18 as described in the text. 

We set 0=0.16 ML and Sav=315 atoms. Curves show the form for the following times 

measured after deposition; 0 min. (the initial form), 5 min., 15 min., 50 min. (darker 

curve), 120 min, 240 min, and 400 min. As time increases, the left shoulder on the curve 

decreases, the peak increases, the right flank moves toward the left, and the large-x tail 
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increases, (b) The experimental size distribution from images containing a total of 420 

islands [with Sav=315 atoms as in (a)] obtained about 50 min. after deposition of0«O.16 

ML of Ag at 295K with a flux Fa:0.006 ML/s. 

6. Evolution of the variance, CT", for three cases corresponding to experiments with F=0.003 

ML/s and coverages of 0.02ML, 0.05 ML, 0.08 ML. (a) Estimates from experimental 

data (symbols), where dashed lines are shown as a guide to the general trend, (b) Rate 

equation predictions using an initial shape for the island size distribution, fo(x), with a 

variance of 0.18, as described in the text, and using 0- and sav-values consistent with 

experiment. 

7. Top: STM image of a 250 nm x 250 nm region showing 0.18 ML of Ag deposited on 

Ag(lOO). Bottom: Cross-sectional height profile taken horizontally through the center of 

the image (at a level indicated by the arrows), and spanning the oblong-shaped central 

protrusion. 

8. Experimental data (solid symbols) for the coarsening kinetics for the region displayed in 

Fig.7. Rate equations with the modified choice of parameters Do=250 A^s and a=1.5 

(solid curve) fit observed behavior, in contrast to those with the previous choice Do=50 

AVs and a=1.5 (dashed curve). 
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Table Caption 

I. Summary of initial conditions for the three families of data for coarsening kinetics 

shown in Fig.2. Shown are values for s^v, 9, Nav, and the initial value of the total 

number of islands in the region analyzed. 

(a) Flux = 0.011 ML/s 

Sav° (atoms/island) 0 (% ML) Nav° X lO-'' (A"^) Number of Islands 

530 25 5.7 230 

205 14 8.1 165 

65 4 7.3 145 

(b) Flux = 0.006 MUs 

Sav° (atoms/island) 0 (% ML) Na^° x 10-=' (A-^) Number of Islands 

510 21 4.9 278 

310 16 6.2 296 

115 5 5.2 248 

(c) Flux = 0.003 MUs 

Sav° (atoms/island) 0 {% ML) Nav° X lO"^' (A'^) Number of Islands 

270 8 3.5 123 

140 5 4.2 150 

60 2 4.0 109 

40 1 3.1 140 

Table I 
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Figure 1 
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Figure 5 
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IV. EVOLUTION OF FAR-FROM-EQUDLIBRIUM 
NANOSTRUCTURES FORMED BY CLUSTER-STEP AND CLUSTER-

CLUSTER COALESCENCE IN METAL FILMS 

A paper published in Physical Review Letters 
Copyright 1998 by the American Physical Society 

C.R. Stoldt, A.M. Cadilhe, C.J. Jenks, J.-M. Wen, J.W. Evans, and P.A. Thiel 

PACS Numbers: 68.35.Bs, 68.35.Fx, 82.65.Dp 

Abstract 

Scanning Tunneling Microscopy experiments reveal the formation of a variety of 

geometrically exotic nanostructures following submonolayer deposition of Ag on Ag(lOO). 

These result from the diffusion of large Ag clusters, and their subsequent "collision" and 

coalescence with extended step edges, and with other clusters. Relaxation of these far-from-

equiUbrium step-edge configurations is monitored to determine rates for restructuring versus 

local geometry and feature size. This behavior is analyzed with lattice-gas model simulations 

to elucidate the underlying atomistic mass transport processes. 
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To obtain the most insight into the dynamics of erosion from observations over a 

limited time span, one would naturally examine the evolution of rugged landscapes rather 

than smooth terrains. Analogous observations apply to systems studied in physics. The 

response to slight perturbations or spontaneous fluctuations from equilibrium determines 

macroscopic transport coefficients [1], but the relaxation of systems from equilibrium 

may provide more insight into underlying transport processes. Such relaxation can reflect a 

competition between various kinetic pathways, controlled by activation barriers for specific 

microscopic processes. In this paper, we study the relaxation of far-from-equilibrium two-

dimensional (2D) step edge nanostructures or "landscapes" on metal surfaces to gain 

fundamental insight into the atomic-scale processes mediating the approach to equilibrium. 

This type of study is of relevance to recent intensive efforts to engineer nanostructures [2], 

which are often surface structures susceptible to rearrangement, in that it constitutes a step 

towards predicting, and even controlling, their useful lifetime. 

One of the more surprising findings of recent Scanning Tunneling Microscopy (STM) 

studies is that metal surfaces near room temperature, which one might expect to be static, can 

actually be in a state of flux. This is evidenced by the observed equilibrium fluctuations or 

"frizziness" of monoatomic step edges on Cu, Au, and Ag surfaces [3]. Evolution of non-

equilibrium structures created either by deposition [4], or by mechanically using the STM tip 

[5,6], is also observed. Large 2D clusters created by submonolayer deposition of metal(lOO) 

homoepitaxial films display unexpected diffusive mobility [7,8]. Cluster diffusion and 

subsequent coalescence upon collision, rather than Ostwald ripening, can even dominate 

adlayer coarsening [8,9]. For deposited multilayer Cu/Cu(l 11) films, diffusion of clusters in 

higher layers to step edges opens an efficient pathway for downward mass transport, and thus 
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film smoothing [10]. The decay of single layer 2D islands [11,12], as well as of multilayer 

island stacks [12] and holes [5], has been monitored on Ag(lII) and Au(l 11) surfaces to 

elucidate associated mass transport processes. All these are examples of dynamic behavior of 

metal siu^ace even at room temperature. We note also that sufficiently rapid restructuring of 

nanostructures influences multilayer film growth [13]. 

In this Letter, we study the relaxation at 295 K of far-from-equilibrium step edge 

nanostructures created by the diffusion and subsequent "collision" and coalescence of 2D Ag 

clusters with other clusters, and with extended step edges, on an Ag(lOO) surface (i.e., 2D 

sintering processes). A comprehensive characterization is provided for varying size, and local 

geometry of the initial stages of rapid relaxation or restructuring just after collision, where 

the configuration has a simple geometrical structure due to the near-square shape of islands. 

Successful, consistent comparison with simulations of a model for adatom diffusion along 

step edges elucidates the atomistic processes controlling mass transport 

The key experimental details can be described briefly [7,9]. We used an Omicron 

room temperature STM housed in a UHV chamber with base pressure of below I0"'° Torr. 

Initial film configurations were created by evaporative deposition of Ag onto a single 

Ag(lOO) crystal. Large area scans of post-deposition evolution were taken at intervals of 3-15 

min., and various examples of cluster diffusion and collision with other clusters and step 

edges were observed. Rates of change of key dimensions were then monitored, consistently 

using the FWHM of scan profiles. The database presented here was obtained with various 

tunneling conditions, and on several single crystals. Its self-consistency indicates that STM 

tip effects do not significantly influence nanostructure evolution. We focus on four distinct 

types of events (Fig.l): collision of clusters with extended step edges of (a) [110], and (b) 
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[100] orientations (these step edge geometries are shown in Fig.2); (c) side-to-side, and (d) 

comer-to-comer collision of pairs of square clusters. [110] is the equilibrium orientation of 

steps, but metastable [100] (and other) orientations result from depositing 0.6-0.8ML of Ag. 

Analysis of the relaxation dynamics rests on key assumptions about the underlying 

atomistic processes, and of their energetics. First, consider mass transport at step edges 

mediated by perimeter diffusion (PD), wherein atoms hop along the step edge, but do not 

detach and reattach from it [14,15]. The key processes shown in Fig.2a include: fast edge 

diffusion along straight [110] steps at rate he; tink escape at rate hk; comer rounding at rate 

hr; and slow "core breakup" at rate he. Corresponding activation barriers are denoted by Ei 

(i=e, k, r, or c), and we assume a common attempt frequency, v. We model the system with 

effective nearest-neighbor (NN) pairwise adatom interactions of magnitude J. Then, the 

detailed-balance relationship between rates for forward and reverse processes [16] implies 

that hk/he=hc/hr=exp[-J/(kBT)]. Semi-empirical energy calculations for metal(lOO) 

homoepitaxy suggest that [14,16] hr=:hk, so we choose Er = Ek = Ee+J, and Ec = Ee+2J. 

A goal of this work is to assess the effective activation barrier, Eact(PD), for step-edge 

restmcturing. Consider the decay of the rectangular protmsion on a [110] step edge shown in 

Fig.2b. At various stages, it is necessary to dismpt the "rectangular core" of the protrusion, 

and this requires "core breakup". (The same requirement was noted previously for cluster 

diffusion [7,14].) However, reduction of the height of the protrusion also requires repeated 

implementation of the combined process of kink escape followed by comer rounding. See 

Fig.2b. If peq~hk/he= exp[-J/(kBT)] denotes the quasi-equilibrium density of atoms released 

from the kink site, then this combined process occurs at an effective rate hefr« peqhr=vexp[-

(Er+J)/(kBT)]. Thus, both core breakup and the combined process of height reduction yield 
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the same Eact(PD)aEe+2J. Similar analysis of the decay of a triangular protrusion on a [100] 

step edge shown in Fig.2c reveals that most of the decay is mediated by core breakup steps, 

so again Eact(PD)=sEe+2J (=Ec). 

It is appropriate to consider the competing pathway for mass transport via terrace 

diffusion (TD), i.e., detachment and reattachment of atoms from the step edge. The effective 

barrier for evaporation, and thus for mass transport, is Eact(TD)=Ed+2J, where Ej denotes the 

terrace diffusion barrier [17]. For metal(lOO) homoepitaxy, a reasonable expectation is that 

[14,16] Ee«Ed/2. Thus, for Ag/Ag(100) where [18] Ed«0.40eV, one has Ee«0.2eV, and an 

energetic advantage of 0-2eV for PD over TD. Thus PD should dominate, at least for small-

size features, and low temperatures. Consequently, the simulation studies described below 

use a simple lattice-gas model for the PD mechanism incorporating the atomic hops 

mentioned above, together with a constraint to preserve connectivity of atoms. 

We now discuss in detail our experimental observations, and corresponding 

simulation analyses, for the 2D coalescence or sintering processes in Fig.la-d. Below, rates 

are quoted in terms of the surface lattice constant, a=2.89 A, for Ag(lOO). 

(a) Cluster + [llO] step coalescence (Fig.la) 

Here, the initial configuration is a square protrusion attached edge-on to a straight 

step. Experimental data indicates a roughly linear variation of the initial rate of decay of the 

protrusion height with its inverse area, for larger sizes (Fig.3a). Simulations confirm the 

equality Eact«Ee+2J(=Ec), and match observed rates if Eact=0.75eV (specifically, Ee=0.20eV, 

J=0.275eV, and v=10'~/s). Both experiment and simulation also show that the decay of a 
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square protrusion does not significantly perturb a perfectly aligned equilibrium [110] step 

edge, but that steps slightly misaligned from [110] adjust rapidly in the vicinity of the 

protrusion to achieve the preferred [110] orientation. 

(b) Cluster + [100] step coalescence (Fig.lb) 

After contact of a cluster comer with the [100] step, both experiment and simulation 

reveal the rapid formation of a connecting meniscus-like neck, together with indentations 

into the metastable step edge (see Fig. lb). The rapid neck growth is primarily due to mass 

flow from the indentations. Simulations reveal an initial fast rise in the neck width with time 

for about 1 min., followed by more sustained quasilinear growth. For a 50x50 atom cluster, 

simulations with the above parameters yield a rate of quasilinear growth of 3.1 a/min., and 

produce a neck width of 35a * 100 A after about 5 min. These results are entirely consistent 

with the experimental behavior for the case in Fig.2b. 

Later, an intermediate configuration of a near perfect right-angled triangle protruding 

from [100] step develops, the sides selecting the preferred [110] orientations (Fig.lb). 

Finally, this triangular protrusion slowly decays. The experimental decay rate of the height at 

onset of this final stage is shown in Fig.3b for various triangle sizes. Substantial uncertainties 

are due to large fluctuations during decay, including wandering and splitting of the protmsion 

peak. Simulation predictions with the above parameters are consistent with experiment, and 

show that again Eact=Ee+2J (=Ec). Decay rates here are far slower than those for square 

protrusions of the same size at [110] steps. This indicates that mass transport is less efficient 

along [100] steps than along [110] steps. Presumably, this is because the former requires 
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repeated core breakup steps, whereas the latter requires merely straight edge hopping and 

kink escape (cf. Fig.2b-c). 

(c) Side-to-side cluster pair coalescence (Fig.lc) 

For unequal sized square clusters which collide side-on, rapid mass flow first occurs to fill in 

the missing comer. This results in significant perimeter length reduction, and some decrease 

of the long dimension. This mass flow quickly leads to the formation of a long-lived 

(metastable) near-rectangular shape. The final stage of evolution from the near-rectangular 

metastable to the near-square equilibrium shape is much slower, as seen in both simulation 

and experiment. The rate of decay of the length is small and difficult to quantify due to 

significant fluctuations, especially for aspect ratios below about 3/2 (i.e., close to the 

equilibrium value of unity). 

(d) Corner-to-corner cluster pair coalescence (Fig.ld) 

For this configuration, one sees a fairly rapid formation of a meniscus-like neck, 

analogous to case (b). Neck growth leads to evolution from a dumbbell-shaped to a convex 

cluster. Subsequent slower evolution produces a near-square equilibrium shape. We focus on 

neck growth for roughly equal cluster sizes. Simulations again reveal an initial fast rise in the 

neck width with time, followed by more sustained quasilinear growth. Experimental data in 

Fig.3c for this rate of quasilinear growth show a roughly linear variation with inverse area of 

the cluster, for the range of experimental sizes. This behavior is consistently matched by 

simulations with the above parameters. The rate of quasilinear neck growth of 0.3 a/min. for 

two 50x50 atom clusters is substantially below the rate of 3.1 a/min. for the 50x50 atom 
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cluster in case (b). Clearly, neck growth for dumbbell-shaped clusters via mass transfer from 

their extremities is less efficient than neck growth via the creation of indentations in a [100] 

step edge. 

In discussing the above results, we first emphasize that our direct STM observations 

of restructuring for suitably selected far-from-equilibrium nanostructures yield immediate 

insight into the underlying mass transport processes. The dramatic difference between the 

rate of decay of protrusions on [110] and [100] step edges reveals a strong dependence of the 

efficiency of mass transport on step orientation, and thus provides clear evidence for PD-

dominated mass transport (since TD should have comparable efficiency for different 

orientations). This conclusion is supported by our argument for an energetic advantage of PD 

over TD, by the consistency of our analysis of experimental data with a PD model for very 

different geometries and sizes, and by the recent demonstration [7] that PD dominates other 

mass transport mechanisms in controlling the diffiision of 2D Ag clusters on Ag(lOO). 

However, the TD and uncorrelated 2D evaporation-condensation (EC) mechanisms of mass 

transport [7-9] always operate to some degree, in addition to PD, and could dominate under 

different conditions (e.g., higher T, or larger sized structures). 

Some aspects of restructuring of the metal surface above seem fluid-like. Hence, it is 

natural to treat them in a coarse-grained or continuum approach where step edge evolution is 

driven by minimization of the step free energy. Mass flow is proportional to the gradient of a 

step chemical potential, which scales with curvature and step free energy. Simple Mullins-

type evolution equations [19] produce slower restructuring with increasing protrusion or 

cluster area. A, but with rates scaling like rather than the observed A'\ for larger A (cf 

Fig.3). Furthermore, continuum treatments cannot assess competition between kinetic 
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pathways, which can strongly influence behavior on the small length scales relevant here. 

This is most apparent if one considers the complete relaxation process, rather than just the 

initial restructuring: introducing an "easy" pathway for atoms to round kinks to reach doubly-

coordinated sites (by concerted exchange with the comer atom), or a lower barrier (below Ec) 

for single atom diffusion along [100] steps, could significantly influence the kinetics and 

geometry of the late stage decay of protrusions at step edges. 

Another aspect of the modeling involves the adatom interactions, treated here as 

effective NN pairwise interactions of strength J=0.275eV. Significantly, using such effective 

interactions to describe the observed transition to reversible island formation during 

deposition yields a consistent estimate of Ja:0.3eV [18]. However, a more complicated 

detailed form for the interactions is likely, so we note that introducing attractive many-body 

interactions results in a smaller NN dimer pair mteraction to fit experimental data. 

As natural extension of the above, we have succeeded in creating almost perfect 

"mirror-images" of the adatom structures in Fig. 1 (i.e., vacancy protrusions into extended 

step edges, and dumbbell- and rectangular-shaped vacancy clusters), and examined their 

relaxation. Prolonged deposition on a stepped surface leads to the advance of steps across 

terraces incorporating islands in the process, and producing an irregular growth structure. 

These step edges smoothen after deposition stops, occasionally leaving square vacancy 

protrusions into [110]-like steps (Fig.4a), and triangular vacancy protrusions into [100]-like 

steps (Fig.4b). Analysis of limited data for the decay of the depth of protrusions suggests 

comparable or faster decay rates than for adatom protrusions of the same size, and much 

higher rates for [110] than [100] steps. Deposition of ~0.8ML of Ag on large terraces 

produces irregular gaps between growing islands. These restructure to form more compact 
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vacancies, often with rectangular (Fig.4c) or dumbbell (Fig.4d) shapes. Neck growth for the 

vacancy dumbbell in Fig.4d is comparable to that for an adatom dumbbell of the same size-

In summary, analysis of the restructuring of exotic far-from-equilibrium step edge 

nanostmctures in the Ag/Ag(100) system provides direct insight into underlying mass 

transport processes (and an estimate of 0.75eV for Ec). The current broad interest in 

fabrication of far-from-equilibrium nanostmctures in surface systems fosters a need for 

studies like ours to elucidate possible decay mechanisms for such structures. This work was 

supported by NSF Grant CHE-9700592, and performed at Ames Laboratory, which is 

operated for the USDOE by Iowa State University under Contract No. W-7405-Eng-82. 
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Figure Captions 

1. Coalescence of: (a) a cluster & [110] step, with collision at ~10 min. (image=35x35 

nm"); (b) a cluster & [100] step (58x58 nm~); (c) a side-to-side cluster pair (35x35 nm~); 

(d) a comer-to-comer cluster pair (38x38 nm"). 

2. (a) Key perimeter diffusion processes (see text), (b) Decay of protmsions at [110] (or 

equivalently [110]), and [100] step edges. 

3. Decay rate, R, vs. 1/area for the height of: (a) square protmsions at [110] step ed.ges; (b) 

triangular protmsions at [100] step edges, (c) Neck growth rate, G, vs. 1/(single cluster 

area) for comer-to-comer cluster coalescence. Right insets show simulated 

configurations. 

4. Vacancy protmsion decay at: (a) a [110] step (image=20x20 nm"); (b) a [100] step 

(50x50 nm^). Vacancy cluster restmcturing for: (c) a rectangular shape (45x45 rmi^); (d) 

a dumbbell shape (54x54 nm"). 
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V. COMPLEX TEMPERATURE DEPENDENCE IN MULTILAYER 
FILM GROWTH 

A paper to be submitted to the journal Science 

C.R. Stoldt', KJ. Caspersen\ M.C. Bartelt", C.J. Jenks\ J.W. Evans', and P.A. Thiel' 

'Departments of Chemistry and Mathematics, and Ames Laboratory, 

Iowa State University, Ames, lA 50011 

"Sandia National Laboratories, Livermore, CA 94550 

Abstract 

Ag/Ag(100) homoepitaxy constitutes one of the simplest multilayer growth systems. Yet, we 

find a variation of the roughness, W, with temperature, T, more complex than any observed 

previously in metal epitaxy. Scanning Tunneling Microscopy studies of 25ML films reveal 

an increase in W as T is lowered from 300K to 220K, then a decrease in W down to 140K, 

followed by another increase for lower T (at least to 50K). A transition from mound 

formation to self-afBne growth occurs below ~160K. Suitable atomistic modeling reproduces 

this behavior and elucidates the imderlying mechanisms. 

PACS Numbers: 68.35.Bs, 68.35.Ct, 68.35.Fx, 68.55.-a, 68.55.Jk 
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The surface morphologies of films grown by deposition on perfect substrates reveal 

rough far-from-equilibrium configurations, particularly at low temperatures where 

equilibration is liinited. Furthermore, important physical properties of such films depend 

sensitively on these morphologies, particularly on roughness. Obvious examples are 

magnetic properties of thin metal films superconducting and localization transitions in 

quench condensed films-, electrical conductivity of metal films on semiconductors^, 

catalytic properties of bimetallic thin films, etc.. Thus, a fundamental and comprehensive 

understanding (and ultimately control) of the atomic-scale processes and mechanisms 

determining film morphology is a crucial goal. 

This goal has yet to be achieved even for simple metal homoepitaxial systems, which 

provide a natural testing ground for ideas on kinetic roughening. Here, and in other systems, 

basic perceptions of film growth have been influenced by "rain model" for low T growth, 

where randomly deposited atoms irreversibly sticking at landing sites in an simple cubic (SC) 

geometry.'^ One finds very rough growth characterized by a Poisson height distribution. This 

behavior persists whenever interlayer diffusion inoperative (in an SC geometry). At high T, 

interlayer diffusion is operative producing smoothing. Thus, the expectation was that 

roughness increases monotonically with decreasing T (i.e., with enhanced kinetic barriers to 

equilibration). In reality, metal film deposition and growth is far more complex. Dramatic 

illustrations are provided by a non-monotonic variation of roughness with T for both the 

Pt/Pt(l 11)5 and Rh/Rh(l 11)^, a feature related to a transition between compact and fractal 

2D island shapes. An earlier surprise in "simpler" metal(lOO) homoepitaxy (where there is no 

dramatic island shape transition) was the observation of smooth grow^ at 77K, as reflected 
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by persistent dififraction intensity oscillations^. More recently, roughness was observed to 

decrease from 200 to 160K for Cu/Cu(100)^, but to increase from 300K to 200K for 

Ag/Ag( 100)9. -fhe discovery of such novel growth characteristics illustrates that studying the 

variation of film roughness and morphology with substrate temperatiu^e can be of key 

importance in revealing and understanding the microscopic processes which dictate fihn 

properties. 

However, most of the recent intense interest and activity in multilayer growth has 

focussed on characterizing kinetic roughening at a specific T.^ For metal homoepitaxy, one 

often observes the development of three-dimensional (3D), pyramid-like mounds on the 

surface.^'®'^''° This reflects the presence of an additional (Ehrlich-Schwoebel) potential 

barrier for downward diffusion at step edges suppressing interlayer diffusion.'^ Villain" noted 

that since diffiising atoms are deflected away from descending step edges, this enhances the 

rate of capture of diffiising atoms at ascending step edges, resulting in a net mass flow in the 

upwards direction. This unstable growth produces mounds. There is ongoing interest in the 

nature and mechanism of the coarsening of these mounds, and its relation to roughening, as 

well as in slope selection.'""''* Another generic class of behavior is self-affine growth, as is 

observed in many more complex systems."*"'^ A distinction between these classes is provided 

by examination of height correlation functions which reflect a characteristic separation for 

mounding, versus a continuous spectrum of lengths for self-affine growth. A single system 

usually exhibits just one these two behaviors. 

In this Report, we study the T-dependence of the growth of multilayer Ag films on 

the Ag(lOO) surface between BOOK and 50K, using Variable-Temperature Scanning 
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Tunneling Microscopy (VT-STM). Despite the fact that this is perhaps the "simplest" 

growth system, we find a variation of roughness more exotic than any observed previously in 

metal epitaxy! Specifically, the roughness of 25 ML Ag films increases as T drops from 

300K to 220K, then decreases as T drops further to 140K, and finally increases again for 

lower T (at least down to 50K). We also characterize the lateral fihn morphology revealing a 

transition from mound formation to self-affine growth, as T drops below about 150-160K. 

Also examined is the scaling behavior for the rough growth at 230 K, which corresponds to 

mound formation with "slow" slope selection. Successful comparison with suitable models 

for metal(lOO) epitaxy elucidate the atomistic processes controlling multilayer film structure: 

unstable growth due to a small step edge barrier of ~30meV at higher T; re-entrant smooth 

growth and a transition to self-affine growth due to downward flinneling at more prevalent 

step edges for lower T; a transition to rough growth at very low T due to the breakdown of 

fimneling on small steep microprotrusions. 

Our experimental data are acquired using an Omicron VT-STM housed in a UHV 

chamber with base pressure below 10'^° Ton*. The Ag(lOO) single crystal is prepared through 

repeated cycles of Ar ion sputtering and annealing to 750 K. Contamination is minimal, 

based on inspection of STM images and Auger spectroscopy. Typical terrace widths on the 

Ag(lOO) substrate are > 1000 A. Ag films are formed by evaporative deposition of pure Ag 

from an Omicron EFM3 UHV evaporator. After deposition, the substrate T remains fixed (± 

5 K) and all surface information is obtained from central portions of broad terraces in order 

to minimize the effect of step edges on data analysis. 

In Fig.l, we begin by showing STM images of 25 ML Ag films grown on Ag(lOO) as 

a function of deposition T. In order to characterize the vertical morphology, we discretize the 
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continuous height distribution from STM (by peak fitting using multiple Gaussian functions 

with a separation equal to the interlayer spacing). The resulting rms surface roughness or 

interface width, W (in units of interlayer spacing) versus T is shown in Fig.2a for 25 ML Ag 

films deposited at F=s0.02ML/s. The remarkably complex T-variation is described above. 

To characterize the lateral morphology in the STM images, we examine the height-

height correlation function, H(r), which gives the mean-square height difference for a lateral 

separation of r. The typical form of H(r) at 230 K is plotted in the inset of Fig. 2b, where the 

first maxima and minima correspond roughly to the average mound radius (Rav), and 

separation (Dav), respectively. Figure 2b shows the T-dependence of Rav and Dav (~ 2Rav), as 

determined from the STM images. The observed trend is consistent with the images of Fig. 1: 

Dav decreases rapidly with decreasing T to about 205 K, after which it remains roughly 

constant. The existence of oscillations in H(r) at 175 K and above reflects formation of 

somewhat ordered arrays of mounds. At 135 K and below, there are no well-defined 

oscillations in H(r), suggesting self-affine growth. This claim is supported by examining the 

roughness exponent, a, determined from the roughness, WL, for a range of shorter STM scan 

lengths, L,'^ and using WL~L". Values of a (where 0<a<l) significantly below unity indicate 

a self-affine growth topography."^ We find that aa:I above 135 K, while a decreases to less 

than ~0.5 below 135 K. We also determine the T-dependence of the average surface slope, 

and the slope of the sides of mounds (see Table I). These (and other) measures of slope 

increase monotonically with decreasing T. 

We now discuss in more detail the behavior shown in Fig.s 1-2 with regard to the 

possible atomic processes responsible for the observed growth characteristics. The discussion 
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and analysis is naturally split into the two temperature regimes for mounding and self-affine 

growth. 

Moimdins Rezime at Hisher-T\ 

At 300 K (Fig.la), and above, Ag/Ag(100) growth appears "quasi-layer-by-Iayer" due 

to slow development of flat mounds. (This contrasts systems with far larger Ese-^'*^) As the 

deposition temperature is reduced from 300 K, mounds become more pronounced as 

interlayer diffusion becomes more inhibited, reflected in an increase in W (Fig. 2a). W peaks 

between 205 and 230 K (Fig 2a), where near square mounds with broad, flat summits are 

observed (Fig. Id-f). X-ray scattering experiments also show a similar increase in W between 

200 and 300 K for -15 ML Ag films on Ag(100).9 In the mounding regime between 175K 

and 300 K, we analyze the Arrhenius behavior of the mound separation, Dav- Using data from 

H(r) in Fig. 2b from 190-300 K yields an Arrhenius energy of E«0.07eV. In this regime of 

irreversible island formation, the characteristic separation for both submonolayer islands and 

multilayer mounds should scale like the sixth power of the terrace diffusion rate."^ This 

implies an activation barrier for terrace diffusion of Ed=6Ea:0.45 eV. This result is consistent 

with estimates of Ed for Ag/Ag(100) from submonolayer STM and HRLEED studies (0.38-

0.42eV)'^, from ion scattering (0.4eV)'^, as well as from density functional theory 

calculations (0.45eV)'^. 

Below ~200 K, terrace diffusion becomes severely inhibited due to the "high" Ed, 

leading to a high density of step edges. This morphological change is readily seen in the 

STM images of Fig. If-g, where feature size decreases significantly with decreasing T. There 

thus develops a significant "downhill" mass flow due to the downward fiiimeling (DF) or 

deflection of atoms deposited at these step edges to lower fourfold hollow (4FH) adsorption 
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sites on the (100) surface."" This acts to smooth the surface, evidenced by the sharp decrease 

in W (Fig. 2a), and ultimately to stabilize growth inducing a transition out of the mounding 

20 regime. 

To describe behavior between roughly 300 and 150K, we employ a kinetic Monte 

Carlo (KMC) simulation model for metal(lOO) homoepitaxial film growth that incorporates 

the irreversible formation of square islands mediated by terrace diffusion, and downward 

funneling. Thermal interlayer diffusion occurs at a reduced rate due to the presence of an 

additional step edge barrier, Ese- For a more detailed description of this simulation model, see 

Ref. 20. We assign Ed=0.4eV based on previous studies, while Ese is estimated as 30 ± 5 meV 

fi-om a fit to the experimental data at 230 K. All attempt fi-equencies are set to 10'^/s. As 

shown in Fig.3a, this kinetic model reproduces the observed T dependence of W between 300 

and 135 K. The model also reproduces the monotonic increase in slope with decreasing T. 

Self-AfTine Growth Regime at Lower-T: 

Below 135 K, W increases again. Why? Molecular Dynamics (MD) simulations of 

metal(lOO) homoepitaxy indicate that downward fimneling can "fail" on steep 

microprotrusions, i.e., deposited atoms sometimes "get stuck" on the sides rather than 

reaching lower 4FH sites." ̂ For lower T, the increase in local slope of the surface enhances 

this effect, producing films with overhangs, internal defects, and larger W.^' But what is the 

origin of the T-dependence in this regime where (100) terrace diffusion is inoperative? The 

key point is that there are many other thermally activated hopping processes, with lower 

barriers, Eact, which can be operative and affect film morphology. For example, atoms 

adsorbed at 3FH sites on the sides of {111} microfacets are mobile above 40K,^^ leading to 

novel downward transport processes. 



www.manaraa.com

97 

Our modeling of low-T film growth, between 0 and 150K, is described as follows. 

We first develop and analyze a "restricted downward fimneling" (RDF) model for growth at 

0 K. Specifically, deposited atoms funnel down until they reach a site with: at least three 

supporting atoms in the layer beneath; or two such atoms beneath and at least one in-layer 

neighbor; or one atom beneath and at least two in-layer neighbors. In this RDF model, the 

roughness increases much more quickly than for the standard DF model, with =1.41 

versus = 0.74 for a 25 ML fibn. Only the former is consistent with experimental 

observations at around 50K. 

To describe (observed) film growth up to around 150K, we augment the above RDF 

model by incorporating various hopping processes for atoms with low coordination number, 

m, as follows: hopping is instantaneous for m<3; Eact=O.I0eV for m=3 (or O.lSeV for three 

supporting atoms); Eact=0.25eV for interlayer hops with m=4 (and m=5). Attempt fi*equencies 

are set to lO'^ s"'. These choices are motivated by the known terrace diffusion barrier of 

O.IOeV for Ag/Ag(l 11),"^ and by semi-empirical studies of energetics. As T is increased, 

these processes become operative, leading to a variation in W for a 25 ML film shown in Fig. 

3b. This is consistent with experimental observations. Fihn growth models with internal 

defects should ultimately achieve KPZ-scaling,"^ but this does not apply in our experimental 

regime. 

Kinetic Roushenins at 230K: 

Finally, we examine the evolution of mounds as a function of film thickness, 0, at 

230K, motivated by the still considerable uncertainty as to the relation between atomistic 

processes controlling growth, and mesoscopic evolution. In Fig. 4a-d, we display STM 

images of multilayer Ag films of varying thickness deposited at 230 K. Fig. 4a shows the 
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quasi-layer-by-layer growth morphology of a 5ML film with small 2D islands and vacancies, 

where mounds are only beginning to develop. Above 10 ML, well-defined mounds have 

formed. Table 11 reports the evolution of W~0'^. A fit of the data between 10 and 100 ML 

jields a growth exponent, p » 0.32. This reasonably matches both P « 0.37 from KMC 

simulations at 230BC, and Ps=0.28 from X-ray scattering^ at 200K. Mound coarsening as 

quantified by Dav (or Rav) ~ 6" is described by a much lower exponent of n « 0.18. The 0-

dependence of local slope indicates a rather slow slope selection with saturation above 50 

ML. See Table n. Behavior is reminiscent of continuum theories for mound evolution 

without slope selection in the regime of irreversible island formation, which predict small 

nwl/6 and large Pal/2.'" Interestingly, behavior follows more closely recent predictions'^ 

based on analyses of noise- or step-edge-restructuring-"'^ induced mound coalescence that the 

ratio ©""/(WDav) is constant [aO.l for our data, with Dav (W) in units of the horizontal 

(vertical) lattice spacing], so P+n=l/2 for simple scaling. This relation reveals an interplay 

between roughening and mound coarsening: faster roughening inhibits coarsening. 

In summary, we have shown that the simple system, Ag/Ag(100), exhibits the most 

exotic variation of W vs. T of any metal multilayer system yet observed. Characterization 

and atomistic modeling of the vertical and horizontal morphologies of deposited films 

provides direct insight into the deposition and difftision processes controlling observed 

behavior. This work was supported by NSF Grant CHE-9700592, and performed at Ames 

Laboratory, which is operated for the USDOE by Iowa State University under Contract No. 

W-7405-Eng-82. MCB was supported by the USDOE (BES) under Contract No. DE-AC04-

94AL85000. 



www.manaraa.com

99 

References 

1 See, e.g. MRS Bulletin, 21, no. 9 (1996). 

^ K.L. Ekinci and J.M. Valles, Phys. Rev. B 58, 7347 (1998). 

^ M. Horn-von Hoegen et al., in Morphological Organization in Epitaxial Growth & 

Removal, Z. Zhang and M.G. Lagally, Ed.s (World Sci., Singapore, 1998). 

^ A.-L. Barabasi and H.E. Stanley, Fractal Concepts in Surface Growth (University 

Press, 

Cambridge, 1995). 

5 R. Kunkel et al, Phys. Rev. Lett. 65, 733 (1990). 

6 F. Tsui et al., Phys. Rev. Lett. 76, 3164 (1996). 

^ W.F. Egelhoff and I. Jacob, Phys. Rev. Lett. 62, 921 (1989). 

^ H.-J. Ernst et al., Phys. Rev. Lett. 72, 112 (1994). 

^ W.C. Elliot et al., Phys. Rev. B 54, 17938 (1996). 

J.A. Stroscio et al., Phys. Rev. Lett. 75, 4246 (1995); K. Thurmer et al., ibid, 75, 

1767 

(1995); J.-K. Zuo and J.F. Wendelken, ibid, 78, 2791 (1997); M. Kalff er al.. Surf 

Sci. 

Lett. 426, L447 (1999). 

J. Villain, J. Phys. I (France) 1, 19 (1991). 

12 L. Golubovic, Phys. Rev. Lett. 78, 90 (1997). 

L.-H. Tang, P. Smilauer, and D.D. Vvedensky, Euro. Phys. J. B 2, 409 (1998). 



www.manaraa.com

100 

M. Siegert, Phys. Rev. Lett. 73, 5481 (1998); M.V. Ramana Murty and B.H. Cooper, 

ibid, 83, 352 (1999); J.G. Amar, Phys. Rev. B 60, R11317 (1999). 

J. BCrim et aL, Phys. Rev. Lett. 70, 57 (1993). 

16 C.-M. Zhang et aL, Surf. Sci. 406, 178 (1998); L. Bardotti et al, Phys. Rev. B 57, 

12544 

(1998). 

1*7 M.H. Langelaar et al.. Surf. Sci. 352-354, 597 (1996). 

B.D. Yu and M. Scheffler, Phys. Rev. Lett. 77, 1095 (1996). 

M.C. Bartelt and J.W. Evans, Phys. Rev. Lett. 75, 4250 (1995); Surf. Sci. 423, 189 

(1999). 

C.L. Kelchner and A.E. DePristo, Surf. Sci. 393, 72 (1997). 

~~ K. Bromann et aL, Phys. Rev. Lett. 75, 677 (1995). 

23 M. Schimschak and J. Krug, Phys. Rev. B 52, 8550 (1995). 

24 C.R. Stoldt et aL, Phys. Rev. Lett. 81, 2950 (1998). 



www.manaraa.com

101 

Figure Captions: 

1. Differentiated STM images of 25 ML Ag films deposited on Ag(lOO) with F=0.02ML/s 

as a ftmction of substrate T: (a-h) 300 K, 280 K, 262 K, 230 K, 205 K, 190 K, 134 K, 54 

K, resp.. All images are 100 nm x 100 mn. Error bars indicate only statistical 

uncertainty. 

2. Properties of 25 ML Ag/Ag(100) films deposited at 300K and below: (a) interface width, 

W (solid circles); (b) characteristic lateral lengths: average mound separation, Dav (solid 

circles); average mound radius, Rav (solid squares). Solid curves guides the eye. Inset in 

2b): typical form for H(r) at 23 OK; arrows indicate the first maximum (Rav) and 

minimum (Dav). 

3. MC simulation results for: (a) multilayer irreversible formation of square islands between 

135 and 300K (solid circles fit with a smooth curve); experimental data as open squares; 

(b) RDF with low barrier hops up to 135 K (solid curve); experimental data as open 

squares. 

4. Kinetic roughening at 230 K. (a)-(d) differentiated STM images of 5, 10, 25 and 100 ML 

Ag/Ag(100) films, respectively. All images are 75 nm x 75 nm. 
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Table I. 

Variation with T of the local slope (in degrees) of 25ML Ag/Ag(100) film surfaces: (i) 

averaged over the entire surface ((j)av); (ii) over the "sides of mounds", defined as regions 

where the slope has a negative lateral curvature ((j)mti); (iii) from tan''(W/Rc), where 

H(Rc)=2W2 ((i)H). See Ref.lO. 

T 54K 135K 175K 230K 280K 

<j)av 14.0 10.6 10.4 8.4 2.7 

't'md 16.0 12.0 12.2 9.6 3.2 

<j)H -— 17.3 13.4 4.0 
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Table II. 

Variation with 0 of the interface width, W, the mound separation (Dav) in nm, and three 

measures of average local slope (cf Table I) in degrees, for an Ag/Ag(100) film deposited at 

230K. 

0 5ML lOML 25ML lOOML 

w 0.61 0.89 1.44 1.90 

Dav 9.6 10.4 13.1 15.7 

(j)av 3.7 5.7 8.2 11.2 

4'md 4.1 6.5 9.3 12.7 

({JH 8.3 10.8 13.4 15.1 
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VI. GENERAL CONCLUSIONS 

The application of a combination of Scanning Tunneling Microscopy (STM) 

experiments, together with mean-field rate equation and kinetic Monte Carlo (MC) 

simulations, leads to fundamental advances in our understanding of metal film growth 

processes, including the determination of key system parameters. The basic phenomena and 

concepts discussed in this dissertation will certainly apply more generally to metal(lOO) 

homoepitaxy, and will often be relevant for a variety of other thin-fibn systems. The main 

conclusions that can be drawn firom this work are given below. 

A comprehensive study of the coarsening of 2D Ag islands on Ag(lOO) has been performed 

at 295 K. 

a) Experimental coarsening curves explicitly show that the island diffusion coefficient is 

size dependent for islands having between 40 and 530 atoms. 

b) Simulations with an appropriate mean-field rate equation give reasonable agreement 

between theory and experiment. 

c) The theory predicts a value of a = 1.5, consistent with simple predictions of a if 

periphery diffusion is the dominant mechanism in island diffusion. 

d) Monitoring coarsening kinetics with STM provides a new means of measuring the 

island diffusion coefficient. 

e) Surface strain on the Ag(lOO) substrate significantly enhances island diffusion and 

coarsening rates. 
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STM experiments show important examples of nanostructure reshaping during Ag/Ag(100) 

homoepitaxy at 295 K. 

a) Nanostructure reshaping occurs during all stages of film growth and equilibration. 

b) The reshaping process is shown by STM to occur on times scales that are 

significant to the overall growth process. 

c) MC simulations of a simple perimeter diffusion, nearest-neighbor interactions 

model captures relevant morphological details as seen with the STM. 

d) Coalescence kinetics is modeled quantitatively, yielding an effective activation 

barrier for step edge restructuring of 0.75 eV. 

Variable-temperature STM experiments reveal novel temperature dependence of morphology 

during the deposition of multilayer Ag films on Ag(lOO). 

a) Doubly non-mono tonic variation of roughness with deposition temperature is 

shown for 25 ML Ag films between 54 and 300 K. 

b) Suitable models for metal(lOO) epitaxy accurately reproduce observed behavior 

and elucidate the atomistic processes and activation barriers controlling multilayer 

film structure. 

c) Smaller lateral mound dimensions and increased steepness of mound sides are 

observed at lower T, consistent with theoretical predictions of multilayer film 

morphology. 

d) At 230 K, roughness increases with a power-law dependence on film thickness, 

giving a growth exponent, P » 0.32. 
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APPENDIX I. ESTIMATION OF THE TERRACE DIFFUSION 
BARRIER FOR THE Ag AD ATOM ON Ag(lOO) 

In submonolayer and multilayer metal film growth, the activation barrier to terrace 

diffusion (Ej) plays a pivotal role in determining thin film characteristics. On a (100) 

surface, Ed is the barrier that a diffusing adatom must overcome when hopping from one 

four-fold hollow site to another. In submonolayer nucleation and growth, there are two 

competing processes which determine the time scale of growth: deposition and diffusion (1). 

The deposition rate, or flux (F), is the rate at which atoms impinge and adsorb onto the 

surface. Once the atoms adsorb, they begin to diffuse or hop at a rate (h) determined by the 

substrate temperature (T). If F is low, atoms will have a long period of time to diffuse, 

sampling many sites across the surface before encountering another deposited atom. 

Conversely, a high F will result in the deposition of atoms in the vicinity of diffusing atoms, 

enhancing the probability of island nucleation and reducing the overall diffusion time for 

adatoms. Due to the competition between deposition and diffusion, the ratio of h/F should 

impact all physical processes during thin film growth. 

As noted in Chapter I, the average island density (Nav) for irreversible island 

formation (i = 1) is expressed as (2, 3) 

3 J VFJ 
[I] 

where P = (KT)"'. The hopping rate (h) for an adatom is defined as 

h = u • exp(-p • Ed) [2] 
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using Arrhenius Law. In film growth, the deposited coverage, 0 (in monolayers, ML), is 

determined by both the deposition F and deposition time (t), and is expressed as 0 = Ft. In 

order to assess the value of Ed, we choose to hold F constant. By doing so, Nav in equation 1 

becomes a function of T only, allowing for the estimation of Ej from an Arrhenius plot. 

Figure 1 shows a series of STM images of submonolayer Ag island distributions on Ag(lOO) 

deposited at varying T (4). In these experiments, both F and 0 are held constant, while T is 

decreased from 300 to 140 K. As T is decreased, Nav is seen to increase significantly, 

manifested in decreases in the island size and inter-island distance. A decrease in T results in 

a decrease in h, as seen in equation 2. By holding F fixed, the ratio of h/F decreases with 

decreasing T, causing an increase in Nav, as predicted by (1) and observed in Figure 1. An 

Arrhenius plot of Nav is given in Figure 2; the corresponding data is shown in Tables I and n. 

Using Arrhenius data fi'om the range 180-300 K, one obtains 

Nav ~ 4.58x10 ^exp nm'^ 

with Ed « 0.37 ± O.XX eV. Instead, using only data from 200-300 K, one obtains 

Ed' Nav ~ 2.43x10 ^exp ^ 3 
nm"̂  

with Ed ~ 0.42 ± O.XX eV. The latter choice is provoked by the possibility that classical 

scaling begins to break down below 200 K (5, 6), as discussed in Chapter V. These results 

are similar to Ed values estimated experimentally for Ag/Ag(100) using HRLEED (5) and 

LEIS (7), which give 0.38-0.42 and 0.40 eV, respectively. 
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Table Captions 

I. Arrhenius data for submonolayer Ag island distributions on Ag(lOO) acquired between 

125 and 180 K using low-temperature Scanning Tunneling Microscopy at the 

University of Ulm, Germany. 

n. Arrhenius data for submonolayer Ag island distributions on Ag(lOO) acquired between 

200 and 300 K. 

Figure Captions 

1. A series of STM images showing the temperature dependence of the average initial island 

density for 0.10 ML of Ag deposited on Ag( 100). The flux is 0.006 ML/s. All images 

are 250 x 250 A. 

2. Arrhenius behavior of the average initial island density, Nav The solid line is a linear fit 

to data between 180 and 300 K producing Ed«0-37 eV. The dashed line is a linear fit to 

data between 200 and 300 K producing E<j~0.42 eV. 
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T{K) # of islands/image image area (mn ") total # of islands total area (nm ") N„ (nm'-) 

125 86 260.61 

125 400 903 

125 74 134.79 

125 52 110.64 

125 82 216 

694 1625.04 0.4270664U 

140 252 1856 

140 241 1575 

493 3431 0.143689886 

150 204 1162.06 

150 72 504.89 

150 160 961.7 

150 119 749.33 

150 125 729.29 

150 106 769.36 

150 166 1175.42 

952 6052.05 0.157302071 

165 216 1984 

165 71 602 

165 95 918 

165 137 1400 

165 110 1054 

165 205 1800 

165 85 850 

165 398 3444 

165 123 1338.75 

165 224 2100 

165 232 2303 

165 381 4004 

2277 21797.75 0.104460323 

180 345 3060 

180 409 4200 

180 99 756 

180 223 1568 

180 158 1312 

180 191 1344 

1425 12240 0.116421569 

Table I 
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T(K) # of islands/image image area (nm') total # of islands total area (mn") Nav 

200 252 4725 

200 207 3629.5 

200 376 6354.4 

200 112 1861.9 

200 60 940.33 

200 100 1542.73 

200 180 2613 

200 66 1135.35 

200 141 2220 

200 206 3412.11 

200 175 2697.3 

200 155 2646 

2030 33777.62 0.060098965 

225 57 1450 

225 109 2537 

225 71 1600 

225 120 2604 

225 198 4556 

225 91 2067 

225 75 1650 

225 132 2800 

225 77 1856 

930 21120 0.044034091 

250 75 4366 

250 64 338S 

250 42 2278 

250 48 2590 

250 53 3330 

250 57 2998.8 

250 37 2100 

376 21050.8 0.017861554 

284 24 4178.07 

284 20 3006.25 

284 33 5210.57 

284 19 2973.05 

284 8 1266.32 

104 16634.26 0.006252157 

300 85 17311 

85 17311 0.004910173 

Table II 
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APPENDIX n. ESTIMATION OF THE ROUGHNESS EXPONENT 
FROM STM IMAGES 

A surface is termed self-affine if the interface width, W, increases with the horizontal 

length, L, according to W oc L", where the roughness exponent 0 < a < 1 is indicative of the 

texture of the surface (1). Specifically, a is a parameter that reflects the degree of height-

height correlation at the interface. Small values of a are associated with uncorrelated, jagged 

surfaces, while large values are associated with well-correlated surfaces (2). In Chapter V, 

we showed that 25 ML Ag films deposited on Ag(lOO) display a characteristic length scale 

Dav, which is determined fi^om a height-height correlation fiinction, H(r). A well-defined Dav 

is the result of diffusion processes on the surface. Deposited atoms travel across the surface, 

searching for the most energetically favorable location to bond. This 'selectivity' in surface 

bonding results in correlated surface features, such as in the mounding regime for 

Ag/Ag(100). Between 190 and 230 K, where mounds form with a well-defined Dav, one 

would expect these surfaces to yield a « 1. At very low deposition temperatures where 

thermally activated diffiision is inoperative, one would expect a to deviate substantially firom 

a value of 1. 

In Fig. l(a-h), log-log plots of W as a fimction of STM image length, L are shown for 

25 ML Ag films deposited between 54 and 230 K, where mounds are observed to form. A 

power-law fit to the data up to the saturation of W (Wsat) gives the roughness exponent a, 

using W oc L". This technique for determining a is fiilly described in Appendix A of 

reference 3. This method is particularly usefiil for the Ag/Ag(100) system since Dav is very 
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small, less than 20 nm for temperatures below 250 K. Therefore, the length scale prior to 

Wsat is well within the scanning capabilities of the STM. Studies of Ag/Ag(l 11) at 298 K, on 

the other hand, could not reach Wsat due to the limited scanning range of their STM (4). 

Between 175 and 230 K, a power-law fit of the experimental data yields a = 1, which is 

consistent with results from H(r) and theoretical results which predict that diffusion is active 

on the surface. Below 135 K, a decreases to approximately 0.5, consistent with theoretical 

predictions that thermally activated diffusion becomes severely inhibited or inoperative, 

resulting in self-affine film growth. 

We also use this method to estimate a for 25-300 ML Ag films deposited on Ag(lOO) 

at 230 K, shown in Figures 8-10. At 25 and 100 ML, a is approximately 1, indicating non-

self-affine growth and correlated mound formation. At 300 ML, a ~ 0.5, a surprising 

indication of self-affine growth with larger film thicknesses. Currently, we do not know the 

origin of this deviation from correlated film growth. 
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Figure Captions 

1. Logio(W) vs. logio(L) plots for the growth of 25 ML Ag films deposited on Ag(lOO) at: 

(a) 230 K, a « 1.07; (b) 205 K, a « 1.08; (c) 190 K, a « 0.98; (d) 175 K, a « 1.05; (e) 

135 Kl, a = 0.93; (f) 107 K, a « 0.57; (g) 62 K, a = 0.55; and (h) 54 K, a = 0.50. L is the 

STM scan length in nm and W is the interface width in nm. The values of the roughness 

exponent, a, are determined from a power-law fit restricted to the observed linear regime. 

2. Logto(W) vs. logio(L) plots for the growth of varying Ag film thicknesses on Ag(lOO) at 

230 K: (a) 25 ML,, a « 1.07; (b) 100 ML, a « 0.99; (c) 300 ML, a = 0.54. L is the STM 

scan length in nm and W is the interface width in nm. The values of the roughness 

exponent, a, are determined from a power-law fit restricted to the observed linear regime. 
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APPENDIX in. ESTIMATION OF MOUND DENSITIES IN 
MULTILAYER Ag/Ag(100) HOMOEPITAXY 

Table Caption 

I. (a) Mound densities for 25 ML Ag films deposited on Ag(IOO) determined using the 

height-height correlation function, H(r), described in Chapter V. (b) Densities 

estimated by hand counting individual mounds between 230 and 205 K, where 

mounds are easily distinguished with the eye. 
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(a) 
T(K) Dav (nm) total # mounds total area (nm^) N (nm"^) 

230 8.877 385 30336 1.269E-02 

225 7.604 683 39493 1.729E-02 

205 8.351 545 38009 1.434E-02 

190 4.742 896 20148 4.447E-02 

175 4.766 896 7291 4.403E-02 

134 4.506 1122 22778 4.926E-02 

107 3.940 824 12790 6.442E-02 

(b) 
T(K) total # mounds total area (nm") N (nm"") Dav (nm) 

230 155 20883 7.422E-03 11.607 

225 475 64132 7.407E-03 11.620 

205 622 60398 1.030E-02 9.854 

190 

175 

134 

107 

Table I 
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APPENDIX rv. THE VTSTM UHV CHAMBER 

1. The vacuum chamber itself 

I finished constructing the new ultra-high vacuum (UHV) chamber built to house the 

Omicron Variable-Temperature Scanning Tunneling Microscope (VTSTM) during the 1998 

Fall semester. The completed vacuum chamber was then used for the multilayer growth 

studies described in Chapter V. This vacuum chamber is horizontally configured (see Figure 

1), a design I first encountered when performing experiments in Professor R. J. Behm's 

group at the University of Ulm in Germany. This design allows for easy sample 

manipulation, translation, and transfer within the vacuum chamber. I also found it important 

to design the chamber with the most massive instruments (ie, ion pump, manual gate valve) 

as close to the floor as possible. This lowers the vacuum chamber's overall center of mass, 

resulting in greater stability and reduced vibrations caused by a "top heavy" chamber 

supported on air legs. By designing the vacuum chamber low to the ground, the experimenter 

also has easy access to all chamber ports and the wobble stick/screwdriver on the VTSTM. 

Finally, the atmosphere-vacuum sample transfer system (load lock) is designed to position 

the sample or STM tip near the VTSTM chamber. The experimenter can directly grasp the 

sample or STM tip with the VTSTM wobble stick, thereby avoiding both transfer first to the 

manipulator and excessive manipulation once in vacuum. This greatly expedites atmosphere-

vacuum transfers and reduces the risk of dropping the sample or STM tip in the vacuum 

chamber. See Figures 2 and 3 for detailed dimensions of the sample prep chamber. 
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The VTSTM UHV chamber features: 

a) Omicron model 25 RH VTSTM with a scanning temperature range of 25-750 K 

b) Thermionics XYZ manipulator with 10" of Z travel and 1" of X-Y travel 

c) Omicron EFM 3 thin film evaporator, 5-20 mm" deposition area 

d) Varian 400 L/s ion pump 

e) Pfeiffer-Balzers 170 L/s turbo pump (main), 53 L/s turbo pump (load lock) 

f) PHI model 10-180 LEED-Auger electron optics system 

g) Dycor LC-series residual gas analyzer, 1-100 amu range 

h) PHI model 04-161 sputter ion gun 

i) Kinetic Systems 36" tall vibration isolation table legs 

j) atmosphere-vacuum sample transfer system (load lock) 

k) home-built gas handling line 

**DO NOT attempt to use the VTSTM UHV chamber (1) before being trained by an 

experienced Thiel group member and (2) before reading the Standard Operating Procedures 

(SOP) for the VTSTM UHV chamber in 331 Spedding Hall.** 

2. The Omicron VTSTM 

Before operating the VTSTM, one must read all supporting documentation provided 

by Omicron. This includes "The Variable Temperature STM User's Guide" and "The SPM 

SO V2.2 Software Manual." Furthermore, one should only attempt to operate the VTSTM 

after being trained by an experienced Thiel group member or Omicron technician. 
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Figure Captions 

1. Side view of the VTSTM UHV chamber showing analytical instruments and structural 

components. (Not drawn to scale) 

2. Side view of the sample prep chamber showing key structural dimensions. (Scale: 1"=2") 

3. Sample prep chamber viewed from the VTSTM flange showing rotational clearance of 

the Omicron sample holder affixed to the XYZ manipulator. (Scale: l"=2") Prep 

chamber flange sizes: (a) 2.75" and (b) 6". 
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APPENDIX V. STM DATABASE 

Table Captions 

I. STM database of Ag/Ag(100) coarsening experiments. 

II. STM database of Ag/Ag(100) coalescence experiments. Columns denoted with a X 

indicate that an example of: comer to comer island coalescence (C-C), side to side 

island coalescence (S-S), island coalescence with a [001] step edge ([001]), island 

coalescence with a [011] step edge ([011]) is present within the particular file of 

experimental images. 

III. VTSTM database of multilayer Ag/Ag( 100) experiments. 
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File F1U.X Coverage Nox 10'^ s •J3V • Time/image # Experiment 

Name (MLs) (ML) (A-) (atoms/island) Notes 
01.08.98 0.0036 0.200 7.4 600 21/1 two separate terraces 
01.10.98 0.0039 0.110 5.4 244 87/7 
01.22.98 0.0039 0.100 6.4 187 30/1 only 4 images 
02.26.98 0.0007 0.040 2.5 190 35/1 Sav too small 
02J28.98 0.0009 0.055 46/1 
03.01.98 0.0005 0.080 72/7 bad tip 

03.02.98 0.0014 0.080 39/2 Sav too small 
04.16.98 0.0100 0.250 5.5 550 15/25 
04.18.98 0.0110 0.140 8.1 205 23/2 Fig. 2(a) in J.ChemJ'hys. 
04.19.98 0.0110 0.040 7.3 65 21/1 Fig. 2(a) in J.Chem.Phys. 
04.20.98 0.0110 0.250 5.7 530 31/3 Fig. 2(a) in J.Chem.Phys. 
04.29.98 0.0060 0.050 5.2 115 27/1 Fig. 2(b) in J.Cheni.Phys. 
04.30.98 0.0060 0.120 5.4 300 45/1 Fig. 2(b) in J.Chem.Phys. 
05.01.98 0.0060 0.200 500 34/3 strange results 
05.02.98 0.0060 0.210 4.9 510 25/1 Fig. 2(b) in J.Chem.Phys. 
05.03.98 0.0050 0.160 4.9 440 51/2 small strained region 
05.06.98 0.0120 0.047 5.9 95 18/2 tip changed island density 
05.08.98 0.0030 0.010 3.1 40 28/2 Fig. 2(c) in J.Chem.Phys. 

05.18.98 0.0030 0.050 4.2 140 48/3 Fig. 2(c) in J.Chem.Phys. 
05.19.98 0.0030 0.080 3.5 270 19/1 Fig. 2(c) in J.Chem.Phys. 
05.20.98 0.0030 0.020 4.0 60 42/3 Fig. 2(c) in J.Chern.Phys. 
05.22.98 0.0030 0.180 4.4 490 36/5 strained. Fig. 7, 8 in J.Chem.Phys. 

• Denotes time in min. between deposition and the first STM image in series and the corresponding image #. 

Table I 
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File Flux Coverage C-C s-s [001] [ O i l ]  Experiment 
Name (ML/s) (ML) Notes 

12.08.97 0.0029 0.29 X X X good data set 
12.09.97 0.0032 0.32 X X only 3 examples 
12.11.97 0.004 0.36 X X 
12.13.97 0.004 0.85 X X X X vacancy examples including worms 
12.16.97 0.004 0.3 X 
06.08.98 0.0097 0.69 good broad view vacancy images 
06.22.98 0.035 0.35 X two cluster-[011] step edge examples 

Table II 
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File Deposition Flux Coverage 

Name Temp (K): (ML/s): (ML): 

08.13.99 350 0.029 25 

07.21.99 320 0.029 25 

04.14.99 300 0.014 25 

04.16.99 280 0.018 25 

03.30.99 262 0.018 25 

03.25.99 225 0.018 25 

05.17.99 230 0.035 25 

03.31.99 205 0.018 25 

04.18.99 190 0.018 25 

04.15.99 189 0.014 25 

03.28.99 175 0.018 25 

03.26.99 134 0.018 25 

06.08.99 135 0.018 25 

08.09.99 107 0.029 25 

05.21.99 90 0.035 25 

07.22.99 62 0.029 25 

05.19.99 54 0.035 25 

05.20.99 54 0.035 25 

08.31.99 230 0.032 5 

03.24.99 230 0.018 10 

09.20.99 230 0.032 10 

08.17.99 230 0.032 100 

10.04.99 230 0.032 300 

04.20.99 190 0.018 10 

03.22.99 135 0.018 10 

03.21.99 300 0.018 10 

03.22.99 135 0.018 20 

03.21.99 300 0.018 20 

Table HI 
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